GaN FET 器件测试、SiC IGBT 测试、光隔离探头高压测试

双脉冲测试 双脉冲测试
60V GaN 设计 60V GaN 设计
650V GaN 设计 650V GaN 设计
1000V+ SiC 设计 1000V+ SiC 设计
资源资源
高压光学探头测试 GaN FET 并测量栅极驱动信号和高压输出

更值得信赖的 GaN MOSFET 和 SiC IGBT 测试

Teledyne LeCroy 为测试每种功率器件提供了更大的信心 - 从低压 (60 V) GaN 功率 MOSFET 到 500 V 应用中使用的任何类型的 GaN 晶体管 (FET 或 HEMT),再到通常用于 1000 V (或更高) 电压的 SiC IGBT。

  • 光隔离探头提供安全、准确的高压测试
  • 高 CMRR、60 V 共模、80 V 动态范围探头
  • 12-bit 分辨率和 8 通道示波器提供高精度测量
  • 简化的双脉冲测试和三相功率分析软件

为宽禁带器件测试提供更高的信心

特励达力科拥有在双脉冲测试电路中测试 GaN MOSFET 和 SiC IGBT、测量逆变器子部分中的开关性能或测试整个系统运行所需的解决方案。

氮化镓 GaN MOSFET 电气原理图符号

GaN 和 SiC 的双脉冲测试

对 GaN MOSFET 和 SiC IGBT 功率半导体进行双脉冲测试
  • 高压光隔离探头具有出色的CMRR 和高精度
  • 60 V 共模探头具有高精度和信号保真度、最低噪声和高 CMRR
  • 12-bit 分辨率示波器可对更快上升时间的 GaN 和 SiC 提供精确的测量和低噪声
:氮化镓GaN MOSFET逆变器分段简单示意图

逆变器子部分验证

捕获、测量和验证逆变器子部分 GaN 和 SiC 开关性能和时序
  • 将 GaN 和 SiC 栅极驱动信号与器件输出关联起来
  • 最广泛的高压探头,从经济高效到高性能,均具有一流的 CMRR
  • 简化了数千个开关周期内死区时间与时间关系的测量和图表
带三相输出滤波变压器的碳化硅 SiC IGBT 功率转换系统示意图

功率转换系统测试

完成基于 GaN 和 SiC 的从输入到输出系统性能测试
  • 捕获全部范围的信号并将控制活动与功率转换系统行为关联起来
  • 适用于交流输入、高压输出、栅极驱动和器件输出开关信号的各种高压探头
  • 专用的电源分析应用软件

MOSFET 和 IGBT 的双脉冲测试程序

双脉冲测试程序用于评估功率半导体的动态特性,双脉冲测试使用栅极驱动信号对 DUT 施加应力并测量器件开启/关闭期间的能量损耗,以及测量二极管的反向恢复。

带 MOSFET 功率半导体的双脉冲测试程序电路
用于 MOSFET 功率半导体低侧测试的双脉冲测试程序电路
用于 MOSFET 功率半导体高端测试的双脉冲测试程序电路
双脉冲测试显示 GaN MOSFET 输出电压 (Vds)、漏极电流 (Id) 和栅极驱动电压 (Vgs)
双脉冲测试装置,包括光学隔离探头、高压差分探头、电流探头、AFG、电源和示波器,用于测试 GaN MOSFET

两个相同的功率半导体器件以半桥配置连接,下部 (LO) 器件有三种测试模式,上部 (HI) 器件也有相同的三种测试模式。测量 HI 器件需要适当额定的高压隔离探头,高压隔离电压相当于直流总线电压。

  • 测试模式1:被测设备处于ON状态并导通电流,另一设备处于OFF状态
  • 测试模式2:被测设备处于OFF状态并阻断电流,另一设备保持OFF状态
  • 测试模式3:被测试设备再次处于开启状态并导通电流,另一设备保持关闭状态

电感器设置为开关位置 1,电路以三种连续模式运行。首先,LO 器件由模拟栅极驱动脉冲驱动为 ON,HI 器件以续流模式运行(左图)。然后,LO 器件被驱动为 OFF(中图),电流继续在电感器中流动(但不会增加)。最后,LO 器件再次被驱动为 ON,反向恢复二极管电流在转换到 ON 状态后不久短暂地流过 HI 二极管,在此期间增加到 LO 器件传导电流(右图)。在这三种模式下运行期间,测量 LO 器件栅极驱动脉冲和 LO 器件输出电压和传导电流。

    将电感器切换至开关位置 2,电路以三种连续模式运行。首先,HI 设备由模拟栅极驱动脉冲驱动为 ON,HI 设备以续流模式运行(左图)。然后,HI 设备被驱动为 OFF(中图),电流继续在电感器中流动(但不会增加)。最后,HI 设备再次被驱动为 ON,在转换到 ON 状态后不久,反向恢复二极管电流短暂地流过 LO 二极管,在此期间增加到 HI 设备传导电流(右图)。在这三种模式下运行期间,测量 HI 设备栅极驱动脉冲和 HI 设备输出电压和传导电流。

      设计和使用功率半导体器件的工程师希望尽量减少开关和传导操作过程中的损耗,以最大程度地提高效率。工程师必须:

      • 1. 准确测量 LO 和 HI 器件上的栅极驱动 (Vgs) 信号上升时间和信号保真度
      • 2. 精确测量开关、导通和关断(阻断)过程中的设备输出电压
      • 3. 精确测量漏极电流并计算各种工作模式下的效率
      • 4. 准确表征二极管的反向恢复电流,以计算能量和效率损失(对于 MOSFET)

      Teledyne LeCroy 提供高精度的示波器和探头(以及辅助的硬件和软件),以实现更准确、更精确的设备特性分析。

      • 12-bit 高精度示波器 (HDO) 具有 0.5% 的增益精度和全带宽下最低的噪声
      • 具有卓越 CMRR、高精度和精密校准的光隔离电压探头
      • 根据 60 V GaN、500 V GaN 和 1000+ V SiC 测试需求定制的探头
      • 测量软件、电源和产生可变宽度栅极驱动信号的任意函数发生器

      60 V GaN MOSFET 设计测试

      典型差分探头的差分和共模额定电压最高约为 24 V(有时高达 42 V),高压差分探头的带宽不足,在较低电压下可能不够准确,并且前端电容可能太大。光隔离高压探头价格昂贵,并且具有不必要的隔离性能,探头需要优化 - 特励达力科有这样的探头

      60 V GaN 设计测试挑战和需求

      60 V GaN 设计必须具有高效率才能最大程度延长电池寿命,为了最大程度提高效率,60 V GaN MOSFET 的上升时间最快可达 1 ns。需要低成本、高性能探头来测量所有信号 — 栅极驱动、器件输出、直流电压和系统输出。

      • 高带宽 (1 GHz),可测量 1 ns 上升时间
      • 可以灵活地使用一个优化的探头进行每个电路内测量(栅极驱动、直流链路、设备输出、系统输出)
      • 忠实地捕捉信号,具有很强的抗干扰能力和较低的附加过冲
      • 低噪声、多通道信号采集

      每次进行 60 V GaN 电路内测量时都使用一个优化探头

      对于 60 V 设计中存在的较低 dV/dT 和共模,光探头太昂贵或性能太高。高压差分探头未针对此应用进行性能优化。只有一种差分探头 - Teledyne LeCroy DL-HCM 系列 - 针对 60 V GaN 探测进行了优化。

      • 60 V 共模电压额定值,80 V 差分电压额定值
      • 测量高达 1 GHz 系统带宽的 1 ns 上升时间(使用 1 GHz 示波器)
      • 体积小巧,配备多种尖端和引线,方便使用

      忠实再现栅极驱动和器件输出信号

      DL-HCM 系列探头具有忠实测量高速栅极驱动和设备输出信号所需的高性能。

      • 由于低、可切换衰减,附加噪声低
      • 最忠实的信号再现,具有 0.5% 的增益精度、0.1 dB 的 LF 平坦度、80 dB 的 CMRR 和低附加过冲
      • 栅极驱动测量具有 8.9 Vmax 或 20 Vmax 的动态范围和低输入负载 (200 kΩ // 0.6 pF)
      • 具有 80 Vmax 动态范围的设备输出测量

      双重用途,可测量直流链路和系统输出信号

      测量每个电路内信号,无论它位于电路的什么位置,并可切换衰减以获得更高的电压。

      • 直流链路纹波测量使用最小 1.6 Vp-p 测量范围,仅具有 3.25 mVRMS 附加噪声
      • 系统输出测量(线路参考或线路到线路),具有 80 Vp-p 差分能力
      • 60 V 共模额定值

      适用于较低带宽测量的低成本高压差分探头(HVD 系列)

      系统输出测量通常不需要高带宽,但仍需要高精度、低噪声和良好的抗噪性(高探头 CMRR)。如果探头定价是一个挑战,HVD 系列探头可以平衡某些 GaN 系统测量的价格和性能。

      • 采用 400 MHz 带宽模型的设备输出测量
      • 使用 120 MHz 至 400 MHz 型号进行系统输出测量
      • 性价比高 — 低噪声,65 MHz 时 CMRR 为 1 dB(比竞争探头高 30 dB 或更高)
      • 1% 增益精度(比竞争探头高两倍)
      • 共模额定电压为 1 kV、2 kV 或 6 kV

      HVD系列高压差分探头产品线图像

      利用全带宽的高分辨率示波器捕获每个细节

      Teledyne LeCroy 高清示波器 (HDO) 在示波器全带宽下始终提供 12 位分辨率。一旦您使用 Teledyne LeCroy HDO,您就再也不想使用其他示波器了。

      • 无需权衡分辨率、采样率或带宽
      • 干净、清晰的波形
      • 更多信号细节
      • 无与伦比的测量精度


        增强逆变器分段和系统测试能力

        Teledyne LeCroy 示波器和软件应用程序包可更快、更完整地调试半桥、全桥和级联 H 桥逆变器子部分和系统。


          电池供电钻头的 VFD 输出、直流电池和机械信号(附功率计算表)

          650 V GaN MOSFET 设计测试

          快速上升时间和高开关电压使无干扰测量变得十分困难,需要对信号采集更有信心,以确保测量信号准确地反映电路中的信号。

          650 V GaN 设计测试挑战和需求

          500 Vdc 设计中使用的 650 V GaN MOSFET 的高 dV/dt 和高电压需要专门的光隔离探头、高质量高压差分探头以及高分辨率、低噪声的示波器。

          • 具有更佳 CMRR 和隔离度的探头可最大程度地消除高 dV/dt 带来的干扰
          • 优化的 1000 V 范围可捕获 500 V 输出开关以及意外过冲和瞬变
          • 忠实、无干扰地再现信号形状,具有较低的附加噪声​​和过冲
          • 能够同时捕获多个信号并评估时序、功率和其他性能

          使用光学探头进行 GaN FET 输出测量 (HV)

          光学隔离在最快的 dV/dt 下提供最佳的抗噪能力,同时还提供安全的操作、高信号保真度以及在紧凑的 GaN 设计中与电路内信号的最简单的连接。

          • 高 dV/dt 能力,适用于设备输出测量(使用 1840 GHz 带宽/1 ps 上升时间 DL435-ISO 光学探头,带 10 V 尖端,1000 V/ns)
          • 卓越的抗噪能力,CMRR 等级为 160 dB
          • 采用精密增益校准,漂移低,实现最佳增益精度 (1.5%)
          • 最忠实的信号再现,低附加过冲
          • 非常灵活的尖端可轻松连接到紧凑型 GaN 设计中的信号

          使用光学探头 (HV) 进行 GaN 栅极驱动信号测量

          光学隔离在最快的 dV/dt 下提供最佳的抗噪能力,同时还提供安全的操作、高信号保真度以及在紧凑的 GaN 设计中与电路内信号的最简单的连接。

          • 高阻抗、低电容尖端 (1 MΩ // 2.1 pF 典型值) 信号负载极低
          • 435 ps 上升时间(1 GHz 带宽 DL10-ISO 光探头连接到 1 GHz 示波器)
          • MMCX 连接和非常灵活的尖端使其能够轻松连接到紧凑型 GaN 设计中的 GaN 栅极驱动信号
          • 卓越的抗噪能力 (160 dB CMRR) 和增益精度 (1.5%),过冲较低

          使用光学探针 HV 测量 GaN 栅极驱动信号

          使用高压差分探头进行直流链路和系统输出测量

          HVD3000A 系列差分探头在宽频率范围内提供高 CMRR,可简化嘈杂、高共模电力电子环境中的测量挑战。探头的设计易于使用,可实现安全、精确的高压浮动测量。

          • 额定电压为 1 kV 或 2 kV 的型号,带宽为 120 MHz 至 400 MHz
          • 65 MHz 时 1 dB CMRR – 比竞争探头好 50 倍
          • 1% 增益精度,最低的附加噪声和过冲
          • 高偏移能力和交流耦合,适用于直流链路纹波测量

          利用全带宽的高分辨率示波器捕获每个细节

          Teledyne LeCroy 高清示波器 (HDO) 在示波器满全带宽下始终提供 12 位分辨率。一旦您使用 Teledyne LeCroy HDO系列,您就再也不想使用其他示波器了。

          • 无需权衡分辨率、采样率或带宽
          • 干净、清晰的波形
          • 更多信号细节
          • 无与伦比的测量精度

          更强大的逆变器分区和系统测试能力

          Teledyne LeCroy 示波器和软件应用程序包可更快、更完整地调试半桥、全桥和级联 H 桥逆变器子部分和系统。

          • 8 通道示波器(使用 OscilloSYNC 时为 16 通道)提供一次性查看所有切换事件的功能
          • 功能强大、深度丰富的工具箱,具有多种自动计时和其他测量功能
          • 特定应用的电源包可轻松将控制事件与电源事件关联起来,甚至与单个设备开关周期关联起来

          1000 V(及更高)SiC IGBT 设计测试

          SiC IGBT 器件通常用于更高的开关电压和电流,并且与常用的硅器件具有许多共同的特性。SiC 器件越来越多地应用于 800 V 牵引逆变器和下一代公用事业输配电系统功率转换设计中。

          SiC IGBT 设计测试的挑战和需求

          额定电压为 1200 V、1700 V 和 3300 V 的 SiC IGBT 用于级联 H 桥和多级级联 H 桥设计,以在高功率水平下实现极高的工作电压,需要高性能、坚固的探头来测量这些设计中的各种信号。

          • 需要1500 V 安全等级探头进行1500 Vdc 系统的高性能测量
          • 探头可以测量从低压栅极驱动信号到超高压(5 kV 级或更高)系统输出的一切信号
          • 高性能信号采集,无干扰地再现信号形状,低附加噪声和过冲
          • 能够同时捕获多个信号并评估时序、功率和其他性能

          用于 SiC 栅极驱动和器件输出信号的光学探头 (HV)

          光学隔离可在最快 dV/dt 下提供最佳的抗噪能力,同时还可为 SiC 设计中的电路内信号提供安全的操作、高信号保真度和方形接头连接

          • 350 MHz 带宽(1.1 ns 上升时间),CMRR 等级为 160 dB,具有最佳抗噪能力
          • 最高精度 (1.5%),具有精密增益校准和低漂移
          • 可互换的尖端允许测量栅极驱动和设备输出信号
          • 方形接头连接至 SiC 信号,且尖端非常灵活,可轻松连接至 SiC 设计中的信号

          带尖端的高压光学探头,用于 1000V 测量

          适用于 6 kV 级设备的最高性能 5 kV 共模高压差分探头 (HVD3605A)

          Teledyne LeCroy HVD3605A 高压差分探头是唯一值得考虑用于 >1500 V SiC 测量的高压差分探头,具有出色的抗噪能力和高性能。

          • 6000 VRMS 共模安全等级
          • 独特的抗噪性能,在最高电压范围内 50 MHz 时具有 1 dB CMRR – 没有同类探头能与之媲美。
          • 唯一允许交流线路、直流链路和系统输出电压探测高达 4160V 设备额定值的探头
          • 业界最佳的偏移能力(6000 V)
          • 1% 增益精度

          符合 IEC/EN 1500-61010:031 标准的 2015 V 共模安全级高压差分探头

          公用电网太阳能光伏 (PV) 逆变器、不间断电源 (UPS) 和焊接系统通常使用 1500 Vdc 总线来最大限度地降低系统成本。Teledyne LeCroy 的 HVD3206A 或 HVD3220 是此类应用的理想选择。

          • 1500 VDC (CAT III) 和 2000 V (DC+峰值AC) (CAT I) 安全等级 – 业内独一无二
          • 低衰减 (500x),额定差分电压为 2000 V
          • 120 MHz 或 400 MHz 带宽额定值
          • 65 MHz 时 CMRR 为 1 dB(比同类竞争产品 50 kV 级探头高 1 倍)
          • 1% 增益精度

          全带宽下高分辨率捕捉每一个细节

          Teledyne LeCroy 高清示波器 (HDO) 在示波器全带宽下始终提供 12 位分辨率。一旦您使用 Teledyne LeCroy HDO,您就再也不想使用其他示波器了。

          • 无需权衡分辨率、采样率或带宽
          • 干净、清晰的波形
          • 更多信号细节
          • 无与伦比的测量精度

          动态工作条件下的 480 Vac 电机驱动输出,右侧为电压和电流的缩放图,前景为 200 MHz 至 8 GHz 的 Teledyne LeCroy 高清晰度示波器 (HDO) 产品线

          增强逆变器分段和系统测试能力

          Teledyne LeCroy 示波器和软件应用程序包可更快、更完整地调试级联 H 桥和多级级联 H 桥逆变器子部分和系统。

          • 8 通道示波器(使用 OscilloSYNC 时为 16 通道)可同时查看所有开关事件
          • 功能强大、深度丰富的工具箱,具有多种自动计时和其他测量功能
          • 特定应用的电源包可轻松将控制事件与电源事件关联起来,甚至与单个设备开关周期关联起来

          mda8000hd 16 通道示波器

          使用我们的高压探头选择指南

          探索我们的电力电子探头登陆页面并使用我们的高压探头选择指南,根据您的额定电压、应用和半导体器件材料确定合适的高压探头,其他资源如下所列。
          高压探头选择表结果示例

          资源

          姓名
          比较高分辨率示波器设计方法

          本白皮书概述了各种高分辨率设计方法,并举例说明了它们对示波器性能的影响。

          下载白皮书

          如何在 5 分钟内选择最佳高压示波器探头

          需要选择高压示波器探头?面对众多可能的选择感到困惑?Teledyne LeCroy 提供高压探头选择指南,这是一款在线工具,可帮助您做出明智的决定。以下是需要考虑的基本要点的细分。

          阅读应用说明

          双脉冲测试推荐设备清单

          推荐使用 Teledyne LeCroy 测试设备对 60 V GaN、650 V GaN/SiC 和 1000 V(或更高)SiC 进行双脉冲测试,并附有 URL 链接。

          产品规格书
          高压光纤隔离 (HVFO) 探头 – 卓越性能
          电流探头
          用于 GaN MOSFET 和 SiC IGBT 的 DL-ISO 探头
          探头比较:Teledyne LeCroy DL-ISO 与 Tek IsoVu 在 GaN/SiC 测量中的应用
          探头比较设置详情:Teledyne LeCroy DL-ISO 与 Tektronix IsoVu

          三相电源和电机大师网络研讨会系列

          加入 Teledyne LeCroy 的学习实验室系列,使用 8 通道高分辨率示波器或电机驱动分析仪测量大功率、三相和电机逆变器和驱动系统。

          全部注册

          在我们的三相电源和电机大师网络研讨会系列的第 1 部分中,我们描述了测量栅极驱动信号和器件输出死区时间的技术,以确保实现裕度。

          在我们的三相电源和电机大师网络研讨会系列的第 2 部分中,我们描述了静态和动态功率分析之间的差异以及如何优化每种分析的设置和测量。

          在我们的三相电源和电机大师网络研讨会系列的第 3 部分中,我们回顾了使用计算的每周期电源波形来验证和调试控制系统操作以实现电源部分行为的示例。

          在我们的三相电源和电机大师网络研讨会系列的第 4 部分中,我们回顾了在相当于设备开关时间的功率周期内计算的功率示例。

          在三相电源和电机大师网络研讨会系列的第 5 部分中,我们演示了如何对交流线路(3 或 50 Hz)输入和变频输出上的变频波形执行总谐波失真 (THD) 和谐波分析。

          在我们的三相电源和电机大师网络研讨会系列的第 6 部分中,我们重点介绍如何使用电机驱动分析仪 (MDA) 通过各种模拟、数字和串行数据传感器来测量电机机械轴速度、扭矩和角度。

          电力电子探测 – 使用什么以及为什么

          电力电子设计具有固有的测量挑战。 有许多专门的高低压单端和差分探头可以满足这个市场的特定需求。 然而,正确选择和使用探头对于操作员、设备和 DUT 的安全至关重要,并且对测量精度也有很大影响。

          全部注册

          在我们的电力电子探测网络研讨会系列的第 1 部分中,我们解释了不同类型的高压探头以及如何为特定应用选择最佳探头。

          在我们探索电力电子网络研讨会系列的第 2 部分中,我们提供了真实世界的应用示例和高压探头比较,以突出每种类型在不同应用示例中的优势和劣势的实际影响。

          比较高分辨率示波器设计方法

          1 GHz 或更高带宽的高清示波器市场呈现爆炸式增长,据称可达 10 位, 12-bit 甚至(非常惊人!)16 位分辨率。示波器制造商使用各种设计方法来提高分辨率,其中一些方法会带来其他性能权衡。加入 Teledyne LeCroy 的两部分网络研讨会系列,以更好地了解各个制造商的声明。

          全部注册

          示波器制造商使用多种设计方法来提高分辨率,其中一些会带来其他性能折衷。 加入 Ken Johnson 参加这个由两部分组成的网络研讨会系列,以更好地了解各种制造商的声明。

          示波器制造商使用多种设计方法来提高分辨率,其中一些会带来其他性能折衷。 加入 Ken Johnson 参加这个由两部分组成的网络研讨会系列,以更好地了解各种制造商的声明。

          在本次网络研讨会中,我们将介绍用于验证和调试 48 V 电源转换系统的新产品、最佳实践和测量技术。

          在本次网络研讨会中,与会者将学习如何安全地执行双脉冲测试,以及如何捕获和表征 GaN 或 SiC 功率半导体器件的动态响应。

          选择和使用台式 PSU:购买台式 PSU 时需要考虑的事项:线性切换模式、总功率、输出数量、可编程等。使用台式电源:了解充分利用台式电源的提示和技巧电源:并行和串行输出配置、4 线连接、在单个 DUT 上使用多个电源等。

          在我们的示波器茶歇网络研讨会系列的第 2 部分中,我们解释了消除时间误差的纠偏。 探头和/或通道之间的传播延迟差异可能会影响定时测量精度。 将描述使这些错误最小化的方法。

          如何对 GaN MOSFET 或 SiC IGBT 进行双脉冲测试?

          此链接 teledynelecroy.com/宽带隙#双脉冲测试 有完整的详细信息。总之,通常使用半桥电路,并在半桥的中点处构建一个可切换电感器。将模拟栅极驱动脉冲施加到低侧或高侧设备,并使用适当的隔离探头和示波器进行各种测量。

          为什么使用高压光学探头进行浮动测量?

          单端探头具有有效连接示波器接地和被测设备 (DUT) 参考接地的接地。如果 DUT 参考接地不能位于示波器(大地)接地,则在 DUT 参考浮于大地之上的电源转换系统中进行任何测量时都需要使用隔离探头。光隔离价格昂贵,但性能优越,尤其是在较高的浮动电压和较高的开关电压下,EMI 可能会对传统(较低 CMRR)电隔离探头的性能产生更大的干扰。

          Teledyne LeCroy DL-ISO 和 HVFO 光学探头 HV 有什么区别?

          Teledyne LeCroy DL-ISO 是一种较新的更高带宽探头,针对小信号(例如栅极驱动)测量和更高电压(器件输出)测量进行了优化。DL-ISO 是 GaN 和 SiC 的理想选择。Teledyne LeCroy HVFO 的带宽较低(与硅和碳化硅的上升时间一致),并且仅针对小信号测量进行了优化,但成本远低于 DL-ISO。此链接 https://www.teledynelecroy.com/probes/high-voltage-optically-isolated-probes 有一个简短的比较。

          Tektronix IsoVu 与 Teledyne LeCroy DL-ISO 光学隔离探头相比如何?

          两种探头的拓扑结构相似。Tek IsoVu 探头的探头带宽为 1 GHz,探头+示波器带宽小于 1 GHz(与 1 GHz 示波器一起使用时),而 Teledyne LeCroy DL-ISO 的探头+示波器带宽额定值为 1 GHz(与 1 GHz 示波器一起使用时)。因此,IsoVu 光学隔离探头连接到示波器时通常具有较慢的上升时间,而 Teledyne LeCroy DL-ISO 作为探头+示波器组合的一部分始终具有全额定带宽(和 435 ps 的上升时间)。Tek IsoVu 隔离探头引线比 Teledyne LeCroy DL-ISO 更坚硬,灵活性更低,这在探测紧密电路时是一个缺点。Teledyne LeCroy DL-ISO 的噪声更低、精度更高,信号再现更真实。不过,Tek IsoVu 受益于第二代设计,探头尺寸更小。 观看视频探头比较:DL-ISO 与 IsoVu 用于 GaN/SiC 测量 ,了解更多详情。

          GaN栅极驱动信号测量的探头需要哪些特性?

          GaN 栅极驱动信号具有非常快的上升时间和低振幅,并且可能对来自探针的负载敏感。需要高带宽(通常为 1 GHz,探针 + 示波器组合)。低探针衰减是最小化噪声和最大化信号保真度的理想选择。需要高 CMRR 来适当抑制来自其他电路内开关事件的辐射干扰。

          用于 SiC 栅极驱动信号测量的探头需要具备哪些特性?

          SiC 栅极驱动信号比 GaN 慢,350 MHz 带宽可能足以正确表征这些信号。SiC 通常用于 800-900 V 开关应用(例如最新一代电动汽车推进电机驱动器),可能需要测量范围 >1000V 的探头来测量信号和预期过冲。否则,所需的探头特性与 GaN 大致相同。

          为什么 48-60V MOSFET 测试需要专用探头?

          48 至 60V 应用中的幅度略高于传统差分探头的共模和差分电压额定值,远低于 HV 差分探头的共模和差分电压额定值。额定共模为 1000V 的 HV 差分探头通常具有可切换的衰减器(例如,50x 表示最大差分电压额定值 ~200V,500x 表示最大差分电压 ~2000V),高 (50x) 衰减和大于必要的差分电压范围会增加测量噪声。此外,大多数 HV 差分探头通常限制为 200 MHz(有少数例外,但 400 MHz 是迄今为止的上限),这限制了它们在基于 GaN 的设计中的用途。Teledyne LeCroy 的 DL-HCM 针对此特定应用中的这些电压范围进行了优化。 观看网络研讨会 48 V 电源转换测试最佳实践 ,了解更多详情。

          为什么有这么多不同类型的高压探头?

          Si、SiC 和 GaN 设计有许多不同的应用,需要不同的性能和各种可接受的价格点。 观看网络研讨会如何选择正确的高压探头 有关为您的应用选择正确探头的详细信息。 观看网络研讨会高压探头真实示例和比较 了解详细信息。如果您没有时间, 阅读应用说明如何在 5 分钟内选择最佳高压示波器探头.

          我是否应该超速驱动示波器前端来测量 MOSFET 或 IGBT 传导损耗?

          过去,工程师会超速驱动示波器前端放大器,并使用示波器偏移来查看传导事件并计算损耗。这种方法容易出错(偏移电路会增加电压读数的不准确性),并且取决于示波器前端放大器在不导致信号失真的情况下被大量超速驱动的能力。一些(但不是全部)较旧的示波器确实具有足够快的超速恢复来执行此测试,但较新的(<20 年)示波器的前端放大器已针对改善的噪声性能进行了优化,这些放大器不太可能容忍超速驱动,因此不建议使用此方法。

          测量 MOSFET 或 IGBT 传导损耗的最佳方法是什么?

          许多新型示波器具有更高的分辨率和更低噪声的前端放大器。准确捕获传导事件的更好方法是在 12-bit 分辨率示波器显示屏,然后使用垂直缩放查看传导事件。16 倍更好的分辨率(与 8 位示波器相比)可能无法完全弥补示波器输入端信号过载的问题,但它将为最终测量提供更多信心。额外的降噪技术(平均、过滤等)可能会进一步提高性能。

          测量 MOSFET 或 IGBT 开关损耗的最佳方法是什么?

          开关损耗很容易用高质量的高压隔离电压探头、电流测量装置(用于较低带宽的某种类型的钳式探头或电流变压器,或串联分流电阻和适当的差分电压探头)和 12-bit 示波器。可以使用数学来计算切换事件期间的功率损耗,也可以使用应用软件程序。

          什么是 Teledyne LeCroy 差分放大器 (型号 DA1855A) 的良好替代品

          Teledyne LeCroy DA1855 和 DA1855A 系列差分放大器从 1990 世纪 2020 年代末一直生产到 1 年代初。当使用适当的引线连接到示波器时,它可以用作 HV 差分探头,在某些 HV 模式下衰减低至 10 倍,在其他模式下增益为 100 倍,CMRR 为 100 dB,但带宽只有 XNUMX MHz(不适用于 GaN 或 SiC)。 AP033 工作电压高达 42V 共模,增益为 10 倍,适合分流电阻测量。 DL-HCM 衰减低至 7 倍,可能适合小信号测量。对于传导损耗测量,我们建议使用问题“测量 MOSFET 或 IGBT 传导损耗的最佳方法是什么?”中描述的技术。

          如果没有隔离的高压探头,是否可以浮动示波器来测量高压信号?

          将示波器悬空在地面上是不安全的——可能会导致示波器操作员严重受伤或死亡,损坏示波器和探头,并损坏被测设备。悬空示波器还需要有意识地改变示波器的用途。出于这些原因,所有信誉良好的公司和实验室都严格禁止悬空示波器,并要求使用额定值合适的高压探头。此外,即使避免了伤亡,悬空示波器采集的信号的测量保真度也可能受到影响。

          需要帮助或信息?

          我们随时为您提供帮助并回答您可能遇到的任何问题。我们期待您的回音