Bandwidth
All <1 GHz 1 to 2 GHz 2.5 to 8 GHz 13 to 30 GHz >30 GHz
All 8 bit 12 bit
All 2 4 8 16
All 10 to 50 Mpts 50 to 250 Mpts 250 Mpts to 1 Gpt 1 Gpt to 5 Gpts >5 Gpts
All ≤2.5 GS/s <5 GS/s ≥5 GS/s ≥10 GS/s ≥20 GS/s ≥40 GS/s ≥80 GS/s ≥100 GS/s
All Basic Advanced
"hdo6000b"

HDO6000B

High Definition Oscilloscopes

  • 12-bitresolution
  • 350 MHz - 1 GHzbandwidth
  • 4channels
"wr8000hd"

WaveRunner 8000HD

High Definition Oscilloscopes

  • 12-bitresolution
  • 350 MHz - 2 GHzbandwidth
  • 8channels
"mda8000hd"

MDA 8000HD

Motor Drive Analyzers

  • 12-bitresolution
  • 350 MHz - 2 GHzbandwidth
  • 8channels
"waveprohd"

WavePro HD

High Definition Oscilloscopes

  • 12-bitresolution
  • 2.5 GHz - 8 GHzbandwidth
  • 4channels
"wm8000hd"

WaveMaster 8000HD

High Definition Oscilloscopes

  • 12-bitresolution
  • 6 GHz - 65 GHzbandwidth
  • 4channels
"wavemaster8zib"

WaveMaster/SDA 8 Zi-B

Oscilloscopes

  • 8-bitresolution
  • 4 GHz - 16 GHzbandwidth
  • 4channels
"labmaster-10-zi-a-oscilloscopes"

LabMaster 10 Zi-A

Modular Oscilloscopes

  • 8-bitresolution
  • 20 GHz - 65 GHzbandwidth
  • 4 to 80channels
"waverunner9000"

WaveRunner 9000

Oscilloscopes

  • 8-bitresolution
  • 500 MHz - 4 GHzbandwidth
  • 4channels
"ws4000hd"

WaveSurfer 4000HD

High Definition Oscilloscopes

  • 12-bitresolution
  • 200 MHz - 1 GHzbandwidth
  • 4channels
"hdo4000a"

HDO4000A

High Definition Oscilloscopes

  • 12-bitresolution
  • 200 MHz - 1 GHzbandwidth
  • 4channels
"wavesurfer-3000z"

WaveSurfer 3000z

Oscilloscopes

  • 8-bitresolution
  • 100 MHz - 1 GHzbandwidth
  • 4channels
"t3dso4000l-hd-series"

T3DSO4000L-HD

Oscilloscopes

  • 12-bitresolution
  • 500 MHz - 2 GHzbandwidth
  • 4, 8channels
"t3dso3000hd"

T3DSO3000HD

Oscilloscopes

  • 12-bitresolution
  • 200 MHz - 1 GHzbandwidth
  • 4channels
"t3dso3000-series-oscilloscope"

T3DSO3000

Oscilloscopes

  • 8-bitresolution
  • 200 MHz - 1 GHzbandwidth
  • 4channels
"t3dso2000hd-oscilloscope"

T3DSO2000HD

Oscilloscopes

  • 12-bitresolution
  • 100 MHz - 350 MHzbandwidth
  • 4channels
"t3dso2000-oscilloscope"

T3DSO2000A

Oscilloscopes

  • 8-bitresolution
  • 100 MHz - 500 MHzbandwidth
  • 2, 4channels
"t3dso1000hd-oscilloscope"

T3DSO1000HD

Oscilloscopes

  • 12-bitresolution
  • 100 MHz - 200 MHzbandwidth
  • 4channels
"t3dso700hd-oscilloscope"

T3DSO700HD

Oscilloscopes

  • 12-bitresolution
  • 70 MHz - 200 MHzbandwidth
  • 4channels
"t3dso1000-oscilloscope"

T3DSO1000/1000A

Oscilloscopes

  • 8-bitresolution
  • 100 MHz - 350 MHzbandwidth
  • 2, 4channels
"t3dsoh1000-series"

T3DSOH1000/1000-ISO

Oscilloscopes

  • 8-bitresolution
  • 100 MHz - 200 MHzbandwidth
  • 2channels
">

选择或比较任何示波器

Teledyne LeCroy 提供多种 8 位或 12-bit 100 MHz 至 65 GHz 的数字示波器。

全部 <1 GHz 1到2 GHz 2.5到8 GHz 13到30 GHz >30 GHz
全部 8 bit 12 bit
全部 2 4 8 16
全部 10到50 Mpts 50到250 Mpts 250 Mpts 至 1 Gpt 1 Gpt 至 5 Gpt >5 Gpts
全部 ≤2.5GS/s <5 GS/s ≥5GS/s ≥10GS/s ≥20GS/s ≥40GS/s ≥80GS/s ≥100GS/s
全部 基础版 先进的
hdo6000b
HDO6000B

High Definition Oscilloscopes

  • 12-bitresolution
  • 350 MHz - 1 GHzbandwidth
  • 4channels
">

HDO6000B

高分辨率示波器

  • 12-bit分辨率
  • 350 MHz-1 GHz带宽
  • 4通道
wr8000hd
WaveRunner 8000HD

High Definition Oscilloscopes

  • 12-bitresolution
  • 350 MHz - 2 GHzbandwidth
  • 8channels
">

WaveRunner 8000HD

高分辨率示波器

  • 12-bit分辨率
  • 350 MHz-2 GHz 带宽
  • 8通道
mda8000hd
MDA 8000HD

Motor Drive Analyzers

  • 12-bitresolution
  • 350 MHz - 2 GHzbandwidth
  • 8channels
">

MDA 8000HD

电机驱动分析仪

  • 12-bit分辨率
  • 350 MHz-2 GHz带宽
  • 8通道
波浪预
WavePro HD

High Definition Oscilloscopes

  • 12-bitresolution
  • 2.5 GHz - 8 GHzbandwidth
  • 4channels
">

WavePro HD

高分辨率示波器

  • 12-bit分辨率
  • 2.5 GHz - 8GHz带宽
  • 4通道
wm8000hd
WaveMaster 8000HD

High Definition Oscilloscopes

  • 12-bitresolution
  • 6 GHz - 65 GHzbandwidth
  • 4channels
">

WaveMaster 8000HD

高分辨率示波器

  • 12-bit分辨率
  • 6 GHz - 65GHz 带宽
  • 4通道
wavemaster8zib
WaveMaster/SDA 8 Zi-B

Oscilloscopes

  • 8-bitresolution
  • 4 GHz - 16 GHzbandwidth
  • 4channels
">

WaveMaster/SDA 8 Zi-B

示波器

  • 8 bit分辨率
  • 4 GHz - 16GHz带宽
  • 4通道
labmaster-10-zi-a 示波器
LabMaster 10 Zi-A

Modular Oscilloscopes

  • 8-bitresolution
  • 20 GHz - 65 GHzbandwidth
  • 4 to 80channels
" data-gt-human-content="true">

LabMaster 10 Zi

模块化示波器

  • 8 bit分辨率
  • 20 GHz - 65GHz带宽
  • 4到80通道
waverunner9000
WaveRunner 9000

Oscilloscopes

  • 8-bitresolution
  • 500 MHz - 4 GHzbandwidth
  • 4channels
">

WaveRunner 9000

示波器

  • 8 bit分辨率
  • 500 MHz-4 GHz带宽
  • 4通道
ws4000hd
WaveSurfer 4000HD

High Definition Oscilloscopes

  • 12-bitresolution
  • 200 MHz - 1 GHzbandwidth
  • 4channels
">

WaveSurfer 4000HD

高分辨率示波器

  • 12-bit分辨率
  • 200 MHz-1 GHz带宽
  • 4通道
hdo4000a
HDO4000A

High Definition Oscilloscopes

  • 12-bitresolution
  • 200 MHz - 1 GHzbandwidth
  • 4channels
">

HDO4000A

高分辨率示波器

  • 12-bit分辨率
  • 200 MHz-1 GHz带宽
  • 4通道
wavesurfer-3000z
WaveSurfer 3000z

Oscilloscopes

  • 8-bitresolution
  • 100 MHz - 1 GHzbandwidth
  • 4channels
">

WaveSurfer 3000z

示波器

  • 8 bit分辨率
  • 100 MHz-1 GHz带宽
  • 4通道
t3dso4000l-hd 系列
T3DSO4000L-HD

Oscilloscopes

  • 12-bitresolution
  • 500 MHz - 2 GHzbandwidth
  • 4, 8channels
">

T3DSO4000L-HD

示波器

  • 12-bit分辨率
  • 500 MHz-2 GHz带宽
  • 4,8通道
t3dso3000hd
T3DSO3000HD

Oscilloscopes

  • 12-bitresolution
  • 200 MHz - 1 GHzbandwidth
  • 4channels
">

T3DSO3000HD

示波器

  • 12-bit分辨率
  • 200 MHz-1 GHz带宽
  • 4通道
t3dso3000 系列示波器
T3DSO3000

Oscilloscopes

  • 8-bitresolution
  • 200 MHz - 1 GHzbandwidth
  • 4channels
">

T3DSO3000

示波器

  • 8 bit分辨率
  • 200 MHz-1 GHz带宽
  • 4通道
t3dso2000hd-示波器
T3DSO2000HD

Oscilloscopes

  • 12-bitresolution
  • 100 MHz - 350 MHzbandwidth
  • 4channels
">

T3DSO2000HD

示波器

  • 12-bit分辨率
  • 100 MHz - 350 MHz带宽
  • 4通道
t3dso2000-示波器
T3DSO2000A

Oscilloscopes

  • 8-bitresolution
  • 100 MHz - 500 MHzbandwidth
  • 2, 4channels
">

T3DSO2000A

示波器

  • 8 bit分辨率
  • 100 MHz - 500 MHz带宽
  • 2,4通道
t3dso1000hd-示波器
T3DSO1000HD

Oscilloscopes

  • 12-bitresolution
  • 100 MHz - 200 MHzbandwidth
  • 4channels
">

T3DSO1000HD

示波器

  • 12-bit分辨率
  • 100 MHz - 200 MHz带宽
  • 4通道
t3dso700hd-示波器
T3DSO700HD

Oscilloscopes

  • 12-bitresolution
  • 70 MHz - 200 MHzbandwidth
  • 4channels
">

T3DSO700HD

示波器

  • 12-bit分辨率
  • 70 MHz - 200 MHz带宽
  • 4通道
t3dso1000-示波器
T3DSO1000/1000A

Oscilloscopes

  • 8-bitresolution
  • 100 MHz - 350 MHzbandwidth
  • 2, 4channels
">

T3DSO1000/1000A

示波器

  • 8 bit分辨率
  • 100 MHz - 350 MHz带宽
  • 2,4通道
t3dsoh1000 系列
T3DSOH1000/1000-ISO

Oscilloscopes

  • 8-bitresolution
  • 100 MHz - 200 MHzbandwidth
  • 2channels
">

T3DSOH1000/1000-ISO

示波器

  • 8 bit分辨率
  • 100 MHz - 200 MHz带宽
  • 2通道
/
高清示波器横幅
Explore
"hdo
Teledyne LeCroy High Definition Oscilloscopes (HDO®)
">
Explore
">
Explore
">

示波器与 始终为 12 位

高清晰度示波器 (HDO) 在 12 MHz 至 200 GHz 的频率范围内始终提供 65 位分辨率。

Explore">Explore
Teledyne LeCroy High Definition Oscilloscopes (HDO®)
">
hdo 12 位示波器系列
Teledyne LeCroy 高清晰度示波器 (HDO®)
qphy2 示波器软件的蓝色背景
Explore
"qphy2
">
Explore
">
Explore
">

验证和合规性只需极短的时间

统一的Tx/Rx一致性测试框架提高了实验室的效率,QPHY2-PC可以离线处理波形数据并释放示波器以进行其他测试。

Explore">Explore
">
qphy2 示波器软件
区域触发横幅的背景图像
Watch Video
"zone
">
Watch Video
">
Watch Video
">

复杂信号的简单触发

通过快速点击和绘制来绘制自定义区域触发器形状。视觉指示器提供实时状态,直通模式可减少故障排除时间。

Watch Video "> 观看视频
">
示波器区域触发
"Power
Power Integrity Testing
">

示波器解决方案和应用

浏览其他网页,了解更多如何使用 Teledyne LeCroy 示波器解决特定应用问题。

Technical Docs

2024 Oscilloscopes Coffee Break Webinar Series Register for All

Part 1: What Is the Difference Between Oscilloscope Resolution, Accuracy and Sensitivity?

In this webinar, we explain oscilloscope resolution and how to optimize for resolution even if a high resolution oscilloscope is not being used. We explain how absolute oscilloscope voltage measurement accuracy is dependent on both resolution and noise, and how accuracy can change based on the oscilloscope sensitivity setting.

Part 2: What Are Digital Oscilloscope ADC Effective Bits and ENOB?

In this webinar, we explain how analog-to-digital converters (ADC) work in oscilloscopes and how the ADC digital bit specification is impacted by the performance of the analog portion of the ADC. This is described in the effective number of bits (ENOB) specification, or simply referred to as effective bits.

Part 3: What Is Digital Oscilloscope Aliasing?

In this webinar, we explain aliasing in an oscilloscope, what aliasing looks like on a real signal, and how to avoid aliasing by understanding the proper minimum ratio of oscilloscope sample rate to bandwidth.

Part 4: What Is Oscilloscope Spurious Free Dynamic Range (SFDR)?

In this webinar, we explain and provide examples of spurious free dynamic range (SFDR) measurements in an oscilloscope analog-to-digital converter (ADC). We also provide advice as to when to be concerned with SFDR performance and when the ADC spurs can be effectively ignored.

Part 5: What Is Oscilloscope Offset and Position?

In this webinar, we explain the difference between oscilloscope offset and position, how to measure signal DC offset with an oscilloscope, and how to utilize oscilloscope offset adjustments to simplify measurements on power rails and other floating signals. Lastly, we explain how applied oscilloscope DC offset reduces accuracy of the absolute amplitude measurement.

Part 6: What Is the Difference Between a Real-time Oscilloscope and a Sampling Oscilloscope?

In this webinar, we explain the difference between a real-time oscilloscope and a sampling oscilloscope in terms of their architectures and typical applications for each.

Part 7: How Does an Oscilloscope Probe Affect My Oscilloscope Gain Settings, Accuracy, Noise and Dynamic Range?

In this webinar, we explain what happens to the oscilloscope when a probe is connected to an oscilloscope input and how the oscilloscope operating characteristics are changed with the probe connected even if this is not made obvious to the user.

Part 8: When Do I Need to Deskew Channels or Probes on an Oscilloscope?

In this webinar, we’ll explain what propagation delay is and what deskew does on a digital oscilloscope to correct for propagation delay differences between oscilloscope input channels and probes. We’ll also describe when you should spend the time to perform a precision deskew and when you can ignore this step.

Part 9: What Is a Digital Phosphor Oscilloscope?

In this webinar, we’ll explain what is meant by a digital phosphor oscilloscope (DPO), a phrase used by Tektronix to describe their fast update rate technology. We’ll also provide an overview of the benefits and limitations of fast update rate technologies.

Part 10: How Do I Use Roll Mode on My Oscilloscope?

In this webinar, we’ll explain how and when you might want to use a roll mode acquisition on your oscilloscope in addition to providing some details on the benefits and limitations of using roll mode for long duration acquisitions.

Part 11: What Is an Oscilloscope Eye Diagram?

In this webinar, we’ll explain what an eye diagram is and how it informs us about serial data signal behaviors. Additionally, we’ll explain the various methods to create an eye diagram, from the simplest trigger-on-edge method to more robust methods using signal clock extraction and data slicing with bit overlay.

Part 12: How Do I Measure Jitter With an Oscilloscope?

In this webinar, we’ll explain what jitter is and the various types of jitter measurements, with a brief introduction to the various methodologies to statistically analyzer jitter numerics, assess how jitter changes (or modulates) over time, and touch on serial data jitter measurement and extrapolation.

2023 Oscilloscopes Coffee Break Webinar Series Register for All

Part 1: What Is Digital Oscilloscope Resolution?

In this webinar, we discuss what oscilloscope vertical resolution is, what higher resolution provides, how to get the most out of your oscilloscope resolution, and how to tell the difference between a high- and low-performance high-resolution oscilloscope.

Part 2: How Much Bandwidth Do I Need in My Oscilloscope?

In this webinar, we define what analog bandwidth is and review what that means in the context of an oscilloscope. We also describe how you may inadvertently reduce your oscilloscope’s rated bandwidth.

Part 3: How Is Rise Time Related to Bandwidth in an Oscilloscope?

In this webinar, we discuss the relationship between signal rise time and oscilloscope bandwidth and how to choose the right bandwidth of oscilloscope for your application.

Part 4: What Is Digital Oscilloscope Sample Rate and How Much Do I Need?

In this webinar, we define what sample rate is and what a high sample rate provides. We also describe the minimum sample rates required and maximum practical sample rates needed for your signal and your oscilloscope.

Part 5: How Much Memory Do I Need to Use in my Digital Oscilloscope?

In this webinar, we define what acquisition memory is in a digital oscilloscope. We also define how acquisition memory, sample rate and capture time are interrelated.

Part 6: How Can I Reduce Noise on Signals Measured With a Digital Oscilloscope?

In this webinar, we describe common causes of oscilloscope noise and how additive noise from the oscilloscope can be reduced to improve the quality of your measurement result, regardless of the starting resolution/noise of your oscilloscope.

Part 7: How Do I Make a Current Measurement with an Oscilloscope?

In this webinar, we describe the various methods to acquire and display a scaled current signal using an oscilloscope’s voltage input. We also describe the advantages and drawbacks of each method.

Part 8: How Do I Measure Current on an Oscilloscope Using a Shunt Resistor?

In this webinar, we provide practical guidance on how to probe the voltage drop across the shunt resistor to minimize noise and accurately measure the current on your oscilloscope.

Part 9: How Do I Make a Differential Measurement on an Oscilloscope Using Passive Probes?

In this webinar, we explain how a differential voltage probe works and how two passive probes can be used to make the same type of measurement on an oscilloscope.

Part 10: How Do I Rescale a Sensor to Use With an Oscilloscope?

In this webinar, we will describe various techniques used to take sensor outputs and rescale them into appropriate and useful non-voltage scientific units such as Pascals, Volt/meter, Webers, Newton-meter, revolution/minute (RPM), etc. for display as an easily understandable waveform on an oscilloscope.

Part 11: How Do I Make an XY Display on an Oscilloscope?

In this webinar, we will provide typical examples of XY plots and how they are created to provide a more complete picture of the circuit or system operation.

Part 12: How Do I Make 3-phase Power Measurements with an Oscilloscope?

In this webinar, we will provide a mathematical explanation of the power calculations used in power analyzers and oscilloscopes, and how both instruments identify a power cycle during which to calculate values.

2022 Oscilloscopes Coffee Break Webinar Series Register for All

Part 1: Five Tips to Improve Your Oscilloscope's Resolution and Dynamic Range

In this session, we recommend five tips and best practices for how to get the best measurement accuracy and performance by using your oscilloscope’s full dynamic range, whether that is 8, 10 or 12 bits of resolution.

Part 2: How to Deskew Your Oscilloscope Probes for Best Accuracy

In this session, we explain deskewing to eliminate timing errors. Propagation delay differences between your probes and/or channels may affect timing measurement accuracy. Methods to minimize these errors will be described.

Part 3: How to Test Low-speed Serial Data Signal Integrity with Eye Diagrams

In this session, we describe how to use your oscilloscope to perform quick and simple signal integrity tests on your low-speed serial data signals using eye diagrams.

Part 4: 50 Ω or 1 MΩ Coupling? That Is the Question.

In this session, we explore what oscilloscope input termination is best – 1 MΩ or 50 Ω? When should you use one over the other? What difference does it make?

Part 5: How to Set Up an FFT for Frequency-domain Analysis

In this session, we describe the insight that can be gained by looking at signal captures in the spectral rather than time domain using your oscilloscope.

Part 6: How to Use Statistical Data and Histograms in Your Oscilloscope

In this session, we describe how to to quickly identify circuit issues through the oscilloscope’s measurements, measurement statistics and statistical measurement distributions (histograms).

Part 7: How to Use Oscilloscope Track or Time Trends for Debugging

In this session, we describe how to to use an oscilloscope’s measurements and track or time trend functions to quickly identify circuit issues and unexpected signal behaviors.

Part 8: How to Use an Oscilloscope as a Serial Digital-to-Analog Converter (DAC) for Validation and Debug

In this session, we describe how to use your oscilloscope to extract analog data values from serial data digital messages for the purposes of validating and debugging digital data transmissions.

Part 9: How to Use an Oscilloscope to Confirm Pulse-width Modulation (PWM) Envelopes

In this session, we describe how to use your oscilloscope to monitor PWM signals and demodulate them to display modulation envelopes, which can be compared to control system inputs and system operation expectations.

Part 10: Zooming With an Oscilloscope – Zoom Waveforms and Timebase Adjustment

In this session, we describe how to view timing details of your acquired signals through the use of both horizontal zoom controls and changes to timebase and delay settings. We will compare and contrast the two methods.

Part 11: Using Oscilloscope Digital Filters to Remove Undesirable Signal Components

In this session, we describe how to remove undesirable signal components in oscilloscope acquired signals through the use of digital filters.

Part 12: Using Oscilloscope Pass/Fail Analysis for Productive Validation and Debug

In this session, we describe how to test signals against a set of qualifying measurement conditions to establish either a “Pass” or “Fail” result.

2021 Oscilloscopes Coffee Break Webinar Series Register for All

Part 1: Getting Your Oscilloscope Set Up Correctly

In this session we will focus on the key vertical, timebase and trigger setups that ensure the highest accuracy, precision and efficiency measurements using your oscilloscope.

Part 2: Optimizing Your Display &amp; Using Cursors and Measurements

In this session, we’ll use the oscilloscope’s display and measurement tools to validate our circuit’s performance and to confirm design margins are being achieved.

Part 3: Getting Your Trigger to Do What You Want

It’s circuit debug time! In this session, we use the oscilloscope’s triggering features to define where we start our investigation to find the troublesome circuit issue.

Part 4: Setting Up Your Timebase and Using Memory Correctly

In this session, we review how to set up your oscilloscope's timebase and take a look at how memory length and sampling rate can impact our results.

Part 5: Optimizing Your Oscilloscope Vertical Gain

In this session, we review oscilloscope vertical gain and why we should care about it.

Part 6: Testing Noisy Power Supply Outputs

In this session, we review which probes are best for your application and how best to connect to your oscilloscope to minimize RF pick up.

Part 7: Debugging Noise Reduction of Decoupling Capacitors

In this session, we will address how to lower power supply output noise when changes to the output capacitors made no difference.

Part 8: Measuring Rise Times and Propagation Delays

In this session, we focus on measuring a power supply’s start up and output performance.

Part 9: Finding Root Causes of Intermittent Failures

In this session, we focus on oscilloscope tools to help us identify measurement outliers, confirm their rate of occurrence, and determine root causes when running circuit validation tests.

Part 10: Measuring Power Supply Transient Response Droop Level

In this session, we will discuss the best practices and techniques for measuring a power supply’s response to transient events.

Part 11: Finding High-Frequency Noise

In this session, we will use our oscilloscope tools and probes to gain an understanding of potential crosstalk or conducted emissions on our power supply circuits.

Part 12: Validating for 1% Noise Margin

In this session, we will investigate how our oscilloscope measurement tools can support us to reach that 1% power supply output noise margin.

What is an oscilloscope?

An oscilloscope is a device that captures an input voltage signal and converts it to a correctly scaled voltage versus time waveform that is displayed on a scaled grid. The oscilloscope has a triggering circuit that defines when the input signal should be captured and displayed, and a variable gain front end that permits (vertical voltage) signal adjustment to accept a wide range of input signal amplitudes. A horizontal (timebase or sweep) adjustment defines the period of time to acquire the signal.

Who invented the oscilloscope?

Many will claim to have invented the analog oscilloscope, but Tektronix can rightly claim to have invented the first triggered-sweep (analog) oscilloscope, which vastly improved the usefulness and versatility of the instrument.

Walter LeCroy and his design team at LeCroy Corporation (now Teledyne LeCroy) in 1985 released the first digital storage oscilloscope (DSO, or now just referred to as a digital oscilloscope) – named the Model 9400 – that replicated and improved on the features and capabilities of the analog oscilloscopes in use up to that time. The Model 9400 had bandwidth (125 MHz) equivalent to what was available in an analog oscilloscope (at the time) and could continuously capture a signal for a long period of time using 32,000 sample points (at the time, an amazingly long acquisition record length). A tenuous claim could be made that LeCroy’s WD2000 Waveform Digitizer (launched in 1971) was the first digital storage oscilloscope, but the record length was limited to 20 sample points and the architecture could not easily scale to longer record lengths. Read the full story here https://www.teledynelecroy.com/walter-lecroy.

What are analog oscilloscopes?

An analog oscilloscope uses a cathode-ray tube (CRT) to display a voltage vs. time variation of an electrical signal. The CRT beam sweeps across the CRT for a defined period of time, beginning with a location defined by a trigger circuit. The (horizontal) time period is referred to as the (beam) sweep. A variable gain front-end amplifier sets the maximum vertical deflection of the CRT beam during the sweep. The CRT beam intensity would decay rapidly after the sweep, so the analog oscilloscope was very useful for viewing repetitive signals but less useful for viewing intermittent signals. A recording device, such as a polaroid camera, was often employed to take a picture of the CRT synchronized with an intermittent trigger event.

What are digital oscilloscopes?

A digital oscilloscope uses an analog-to-digital converter (ADC) to vertically sample, at discrete time intervals, an analog input signal and then convert the analog input signal to digital sample points at defined quantization levels. When the digital sample points are connected together, they faithfully represent the analog signal. Digital oscilloscopes are characterized by the number of vertical levels in the ADC, described as N bits with 2N defining the maximum possible number of discrete vertical quantization levels that can be differentiated for each sample point. Each sample point is stored in a memory buffer for display or further mathematical processing of some sort.

What is a digital storage oscilloscope (DSO)?

A digital storage oscilloscope is just another term for a digital oscilloscope, reflecting that the sample points are stored in a memory buffer.

Who invented the digital oscilloscope?

Walter LeCroy and his design team at LeCroy Corporation (now Teledyne LeCroy) in 1985 released the first digital storage oscilloscope (DSO, or now just referred to as a digital oscilloscope) – named the Model 9400 – that replicated and improved on the features and capabilities of the analog oscilloscopes in use up to that time. The Model 9400 had bandwidth (125 MHz) equivalent to what was available in an analog oscilloscope (at the time) and could continuously capture a signal for a long period of time using 32,000 sample points (at the time, an amazingly long acquisition record length). A tenuous claim could be made that LeCroy’s WD2000 Waveform Digitizer (launched in 1971) was the first digital storage oscilloscope, but the record length was limited to 20 sample points and the architecture could not easily scale to longer record lengths. Read the full story herehttps://www.teledynelecroy.com/walter-lecroy.

What is the difference between analog oscilloscopes and digital oscilloscopes?

An analog oscilloscope uses a cathode-ray tube (CRT) to display a phosphor trace on the CRT, with the trace displaying a continuous voltage vs. time waveform consistent with the electrical input signal and the trace intensity quickly decaying over time. A digital oscilloscope converts the analog electrical input signal into digital sample points that, when connected together, correctly reproduce the analog waveform, and the reconstructed waveform is displayed on an LCD display, with the digital sample points available to be further processed to make measurements or calculate math functions.

What is the difference between a digital oscilloscope and a digitizer?

Digitizers generally are rack-mounted and can be connected to measure many more channels than a typical oscilloscope, but lack the variable gain front-end amplifiers, coupling selection, front panels, displays and other features that most people take for granted in an oscilloscope.

How do I measure a non-voltage signal with an oscilloscope?

Oscilloscopes accept voltage signals as inputs. A probe or sensor must be used to convert a non-voltage signal (e.g., a current signal, a magnetic field signal) into a voltage signal, correctly scaled in the appropriate units. Probes or sensors to measure current are commonly available from oscilloscope manufacturers, and sensors to measure other units are widely available. Most professional-grade oscilloscopes provide support for common rescaling (e.g., from Volts to Amps) and many other units, but if this is an important feature for your requirements, it is best to check the support for rescaling within the oscilloscope before purchase, especially if the sensor has a non-linear input to output ratio.

Reference webinarsPart 7: How Do I Make a Current Measurement with an Oscilloscope?andPart 8: How Do I Measure Current on an Oscilloscope Using a Shunt Resistor?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.

What is the bandwidth of an oscilloscope?

TheIEEE 1057 Standard for Digitizing Waveform Recordersspecifies the analog bandwidth of a digital oscilloscope as the frequency at which the amplitude response is -3 dB (which equates to 70.7%) of the response at the reference frequency (which for an oscilloscope is DC). While it may seem confusing to have an analog bandwidth specification in a digital oscilloscope, the digital oscilloscope has many analog amplifier components prior to the portion that digitizes and stores the signal.

How much bandwidth do I need for an oscilloscope?

The bandwidth required for capture and measurement of signals depends greatly on the signals to be measured, the types of measurements to be made, and the accuracy desired of the measurements. A rough rule of thumb most engineers use is to have an oscilloscope with three times the bandwidth of the highest frequency signal they wish to measure, though this becomes impractical for very high frequency signals.

Reference the definition for oscilloscope bandwidth in the FAQ (above). Most oscilloscopes approach the -3 dB bandwidth-rated frequency slowly, beginning with a gentle amplitude rolloff at 50% (or so) of the bandwidth frequency rating. This means that if the oscilloscope amplitude response is -1 dB at 70% of rated bandwidth and -2 dB at 85% of rated bandwidth, then the amplitude of the captured pure sinusoid will be approximately 90% (-1 dB) or 80% (-2 dB) and 70% (-3 dB) compared to when the input sinusoid frequency is approaching the bandwidth rating of the oscilloscope. However, most engineers are not measuring pure sinusoids with their oscilloscope. Note that the highest bandwidth oscilloscopes may have a flatter (less amplitude rolloff) or adjustable amplitude response, for a variety of reasons.

More likely, an engineer is measuring a signal that resembles a square wave. In this case, it is known that a square wave can be represented as a Fourier series expansion comprised of the sum of the fundamental frequency and odd harmonics, with the Nth harmonic contributing a 1/N amplitude at that frequency. What this means is that to accurately represent a square wave, you need enough bandwidth to capture the fundamental frequency and enough of the odd harmonics. How many odd harmonics is “enough” (and how much bandwidth is needed) is determined by the engineer’s tolerance for a rise time measurement on the oscilloscope that is slower than the real signal, and the amount of additive overshoot and ringing present on the measured signal. If only the 3rd harmonic is captured, the rise time will be appreciably slower, and the overshoot and ringing will be noticeable compared to if the 99th harmonic is captured (in which case the captured signal will be indistinguishable from the original input signal).

This gets us back to the original answer that is given most often in response to the question of “how much bandwidth is needed?” – about 3x the bandwidth of the highest frequency signal. But what does “highest frequency” mean? In this context, most engineers are thinking of the rise time measurement capability of the oscilloscope (which is related to bandwidth). If an engineer wants to measure a signal with a rise time of 1 ns, they would not choose an oscilloscope with a 1 ns rise time (such an oscilloscope would typically have a bandwidth of 350 MHz) – they would choose an oscilloscope with bandwidth 3x that (or 1 GHz).

Reference webinarPart 2: How Much Bandwidth Do I Need in My Oscilloscope?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.

What is digital oscilloscope resolution?

Resolution is the number of analog-to-digital converter (ADC) quantization levels, with an N-bit ADC having 2N quantization levels. For instance, an 8-bit oscilloscope has 28 = 256 quantization levels whereas a 12-bit oscilloscope has 212 = 4096 quantization levels. Note that the number of bits (quantization levels) in the ADC is no guarantee that the rest of the oscilloscope’s signal path (notably the analog components) will have noise performance worthy of a high resolution ADC. Thus, an advertised high-resolution oscilloscope may perform no differently than a conventional 8-bit resolution oscilloscope. ReferenceComparing High Resolution Oscilloscope Design Approachesfor more details on that tradeoffs that many oscilloscope manufacturers make when designing high-resolution oscilloscopes. Reference webinarPart 1: What is Oscilloscope Resolution?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.

What is a high resolution oscilloscope?

A high resolution oscilloscope is any oscilloscope that is advertised as such and that uses either improved hardware, software filtering (that reduces bandwidth and sample rate), or a combination of both to provide improved resolution and signal-to-noise ratio compared to a conventional 8-bit oscilloscope. A marketing claim of high resolution is no guarantee of real-world performance. Claims of high resolution specific to the ADC, or improvements in baseline noise or signal-to-noise ratio that are only possible at reduced bandwidths, are red flags that the so-called high resolution will not be realistically achieved in all normal oscilloscope operating conditions. ReferenceComparing High Resolution Oscilloscope Design Approachesfor more details.

What are the differences between high-resolution oscilloscopes and high-definition oscilloscopes?

There is no difference – these are just two ways to express the same thing, though it should be noted that Teledyne LeCroy has a registered trademark on the name High Definition Oscilloscope and the acronym HDO, having been the first oscilloscope company to offer 12-bit high-resolution oscilloscopes that provide 12 bits all the time with no reduction in sample rate or bandwidth.

What are mixed signal oscilloscopes (MSO)?

A mixed-signal oscilloscope (MSO) commonly refers to an oscilloscope that has both analog and digital (logic) input channels. A common configuration is 4 analog input channels plus 16 digital logic input channels. The digital logic input channels can preserve the scarcer (and more expensive) analog input channels for signals that require their capabilities, and the digital logic input channels can be used for simple toggle or logic signals, or low-speed serial data (e.g., I2C, SPI, UART, etc.) signals.

What are mixed domain oscilloscopes (MDO)?

Mixed-domain oscilloscope (MDO) is a marketing term for an oscilloscope that provides some type of radio frequency (RF) input or conversion to capture signals in both the time and frequency domains. If a dedicated RF input is provided, capabilities can be similar to that of a spectrum analyzer. Software fast fourier transform (FFT) techniques can be used to provide similar capabilities without a dedicated (and costly) RF input.

What is the accuracy of an oscilloscope?

The amplitude accuracy of an oscilloscope is comprised of many different components and will vary depending on the oscilloscope resolution, input path, input frequency content, whether a probe is used, etc. Amplitude accuracy can range from better than 1% for a 12-bit high definition oscilloscope (HDO®) with a cable signal input, to 5% (or more) for an 8-bit oscilloscope operating with an active probe coupled to the oscilloscope via the 50 Ω termination. While these accuracies may seem low compared to a digital voltmeter (DVM), an oscilloscope provides far more capabilities than a DVM.

ReferencePart 1: What Is the Difference Between Oscilloscope Resolution, Accuracy and Sensitivity?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

What is oscilloscope sensitivity?

Sensitivity is the smallest signal change that can be viewed in the oscilloscope. An oscilloscope with high sensitivity can be used to view smaller signals compared to an oscilloscope with lower sensitivity. Sensitivity adjustment on the oscilloscope is made using the vertical gain setting (volts/division). Note that high sensitivity does not necessarily correlate to high accuracy, and that an analog vertical gain setting indicative of high sensitivity (e.g., 1 or 2 mV/div) may be limited in usefulness by the ADC resolution or noise in the oscilloscope. ReferencePart 1: What Is the Difference Between Oscilloscope Resolution, Accuracy and Sensitivity?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

How would I relate rise time to bandwidth in an oscilloscope?

Historically, an engineer would consider rise time to be related to bandwidth according to the formula TR(s) = 0.35/Bandwidth (Hz), with TR being the 10-90% rise time (as defined by the IEEE). This formula was (mostly) true in an era when oscilloscope bandwidths were very low (1 GHz or less) and amplitude rolloffs were very gradual. This formula can still hold true for lower bandwidth oscilloscopes.

Today’s higher bandwidth oscilloscopes—or oscilloscopes with more complex, lower-noise signal paths—might adhere to the TR(s) = 0.35/Bandwidth (Hz) formula for models at the lower (bandwidth) end of the product line but adhere to TR(s) = 0.4/Bandwidth (Hz) or perhaps approaching TR(s) = 0.45/Bandwidth (Hz) (or higher, in some cases) for maximum bandwidth models. The reason for the lower numerator in lower bandwidth models is that they are likely using an analog signal path that has more high-frequency headroom for a slower amplitude rolloff compared to the highest bandwidth models. On the highest bandwidth oscilloscope model in a product series, the analog signal path likely has reached a hard, upper limit on amplitude response, and the amplitude response rolls off quickly beyond that, which results in a slower rise time (and higher numerator) due to the highly attenuated high frequency response past the bandwidth rating of the oscilloscope.

Reference webinarPart 3: How Is Rise Time Related to Bandwidth in an Oscilloscope?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.

What is sample rate in a digital oscilloscope?

A digital oscilloscope digitizes signals through analog-to-digital converters (ADCs) that sample and hold voltage values to create discrete sample points. Sample points are recorded at a given frequency (time interval), and the sample rate is referred to as Samples/second.

Reference webinarPart 4: What Is Oscilloscope Sample Rate and How Much Do I Need?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.

How much sample rate do I need in my digital oscilloscope?

The minimum sample rate needed, according to Nyquist theorem, is twice that of the frequency you wish to measure. In a digital oscilloscope, this is commonly interpreted as sample rate and must be a minimum of twice the oscilloscope’s bandwidth rating. However, the oscilloscope doesn’t usually have a brick-wall amplitude response past the bandwidth rating, and it will pass some high frequency content beyond the bandwidth rating. Therefore, most oscilloscopes provide a minimum sample rate to bandwidth ratio of 2.5. This can be considered the minimum to reconstruct a sinewave from digital sample points.

To accurately reconstruct more complex signal shapes from digital sample points, engineers commonly desire 5 or perhaps up to 10 sample points on a rising edge. If an engineer is following the common rule of thumb of selecting an oscilloscope three times faster than the signal they wish to measure (Reference webinarPart 2: How Much Bandwidth Do I Need in My Oscilloscope?in the 2023 Oscilloscope Coffee Break Webinar Series for other details, or the similarly titled FAQ), then 5 to 10 sample points on a rising edge is easily accommodated.

Reference webinarPart 4: What Is Oscilloscope Sample Rate and How Much Do I Need?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.

What is digital oscilloscope acquisition memory?

Acquisition memory is what is used to store the digital oscilloscope sample points for recall to a display or for further processing to make measurements, perform math calculations, etc.

How does digital oscilloscope acquisition memory differ from CPU memory?

Oscilloscope acquisition memory stores the oscilloscope sample points of the digitized signal, whereas the central processing unit (CPU) that is powering the oscilloscope functions has its own random access memory (RAM) to serve the CPU’s needs.

What is meant by digital oscilloscope memory depth?

Memory depth is just another way to describe the total length of the acquisition memory, whether in points (e.g., kilopoints (kpts), megapoints (Mpts), Gigapoints (Gpts)) or in samples (e.g., megasamples (MS)).

How many samples do I need in an oscilloscope acquisition?

More samples (or points) provide more capability to capture very long continuous time intervals before needing to reduce the sample rate. How many samples an engineer needs depends on the bandwidth of the signals an engineer wishes to capture, the time resolution an engineer wishes to capture those signals with, and the amount of continuous time an engineer wishes to acquire.

How are sample rate and acquisition memory related in a digital oscilloscope?

If an oscilloscope had a sample rate of 10 GS/s and 1 GS (or Gpts) of acquisition memory, then it could acquire 100 ms of time (1 GS / 10 GS/s = 0.1 s, or 100 ms). If it was desired to capture 200 ms with 1 GS of acquisition memory, the sample rate would have to be reduced to 5 GS/s, which may (or may not) be acceptable.

What is baseline noise in an oscilloscope?

Oscilloscope baseline noise is the measured AC RMS value of an oscilloscope input channel with no signal connected to it. A simple baseline noise test will provide a general indication of noise performance when no signal is present on the input to the oscilloscope. While this test is simple and easy to perform, it is not the most realistic test of oscilloscope performance, because most oscilloscopes are used with input signals connected to them. Nonetheless, noise will not decrease when input signals are added, as the added signal amplitude will only add noise to the measurement later. Thus, baseline noise can be a useful test for roughly assessing overall performance.

Note that in a Teledyne LeCroy oscilloscope, the SDEV measurement equates to AC RMS.

ReferenceComparing High Resolution Oscilloscope Design Approachesfor more details about various types of noise in oscilloscopes.

What is signal-to-noise ratio (SNR) in an oscilloscope?

Signal-to-noise ratio is the calculation of the ratio of full scale range divided by the baseline noise, expressed in volts according to the following formula:

SNR (dB) = 20*log10((VFull-scale/(2*√2))/VAC-RMS))

With VFull-scalebeing the full scale voltage on the oscilloscope (equal to number of vertical divisions * V/div gain setting) and VAC-RMSbeing the AC RMS value for the baseline signal at a given V/div gain setting.

Note that some oscilloscopes (e.g., Keysight, Teledyne LeCroy) have 8 vertical divisions for full scale whereas others (e.g., Tektronix) have 10 vertical divisions for full scale.

Note that Teledyne LeCroy’s AC RMS measurement is named SDEV, whereas other oscilloscopes typically have an RMS measurement that is selectable as either AC or DC reading. Be sure to use the AC RMS value or the SNR calculation will incorrectly include the effect of any small DC offset errors in the oscilloscope channel.

SNR(dB) = 20*log10( (V/div*8/(2*sqrt(2)))/noise_in_rms)

ReferenceComparing High Resolution Oscilloscope Design Approachesfor more details about various types of noise in oscilloscopes.

What is signal-to-noise and distortion ratio (SINAD, or SNDR) in an oscilloscope?

Per IEEE Std. 1057 IEEE Standard for Digitizing Waveform Recorders, SINAD is the ratio of root-mean-square (rms) signal to rms (baseline) noise and distortion. SINAD is measured at a specific frequency and amplitude using a sinewave input, and the amplitude at which the measurements are made does impact the distortion and should be specified (90% of full-scale amplitude is typical). SINAD is a more complete measurement of the performance of the oscilloscope in actual operation.

ReferenceComparing High Resolution Oscilloscope Design Approachesfor more details about various types of noise in oscilloscopes.

How can I reduce noise on signals measured with oscilloscopes?

The best method to reduce noise on signals measured with your oscilloscope is to use a low-noise, high-resolution oscilloscope that provides 12 bits resolution at full bandwidth. But any oscilloscope can have its noise reduced using analog hardware or digital software filters provided that the tradeoff of lower bandwidth in exchange for reduced noise is acceptable.

Hardware filters are usually displayed as a 20 MHz or 200 MHz (or similar) bandwidth limit in the channel menu. These filters tend to have very slow rolloffs, so their noise reduction capability is probably less than that of a digital software filter.

Digital software filters may be math functions, may be high-resolution modes, or may be software filter selections in the channel menu (e.g., Teledyne LeCroy’s Enhanced Resolution (ERes) selection). Mathematically, every halving of the sample rate (and bandwidth) reduces noise by 3 dB (~30%, or 0.5 effective bits). Sometimes the digital software filters interpolate sample points after the mathematical filter operation, but the hardware sample rate has still been reduced.

Be wary of high-resolution modes that promise better performance than what is mathematically possible, or that are the only means of achieving high resolution (and lower noise) in what would otherwise be an 8-bit resolution oscilloscope.

ReferenceComparing High Resolution Oscilloscope Design Approachesfor more details about tradeoffs made to reduce noise in oscilloscopes. Reference webinarPart 6: How Can I Reduce Noise on Signals Measured With an Oscilloscope?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.

&nbsp;

What is “effective number of bits” (ENOB) in oscilloscopes?

Oscilloscope ENOB is derived from measurement of the oscilloscope SINAD as follows:

Oscilloscope ENOB= (SINAD-1.76)/6.02

If the front-end amplifier is not the dominant source of noise in the oscilloscope system, the system ENOB will approach the ENOB of the ADC. It is important to understand that the ADC ENOB is an upper bound on the system performance, but the system performance is the critical performance to understand. Realistically, the oscilloscope (system) ENOB will always be less than the ADC ENOB.

If the applied input signal is not 100% of full-scale amplitude, then the ENOB is derived as follows:

Oscilloscope ENOB= (SINAD-1.76+20 log((FullScale Amplitude)/(Input Amplitude)))/6.02

A “rule-of-thumb” of 6 dB SINAD per effective bit can be inferred from this equation. Thus, improvement of half an effective bit equates to 3 dB (30%) reduction in noise, and improvement of a full effective bit equates to a 6 dB (50%) reduction in noise. Small differences in ENOB mean a lot in terms of vertical (voltage amplitude) noise.

ReferenceComparing High Resolution Oscilloscope Design Approachesfor more details about various types of noise and why the ADC rated number of bits isn’t fully achieved when deployed in digitizers or oscilloscopes.

ReferencePart 2: What Are Oscilloscope ADC Effective Bits and ENOB?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

Is an oscilloscope analog-to-digital converter (ADC) ENOB the same as the oscilloscope ENOB?

The ADC ENOB is an upper bound on the oscilloscope ENOB, but the oscilloscope ENOB is the critical performance to understand. Realistically, the oscilloscope ENOB will always be less than the ADC ENOB. If an oscilloscope makes specific claims about the ENOB performance of its ADC, it is probably a red flag that the complete oscilloscope ENOB performance is much less.

ReferenceComparing High Resolution Oscilloscope Design Approachesfor more details about various types of noise and why the ADC rated number of bits isn’t fully achieved when deployed in digitizers or oscilloscopes.

ReferencePart 2: What Are Oscilloscope ADC Effective Bits and ENOB?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

What is the Nyquist Theorem and how does it relate to digital oscilloscopes?

The Nyquist theorem states that a sinusoid can be reconstructed with no loss of information provided it is digitally sampled at twice (or more) of the frequency of the sinusoid. Typically, this means that the minimum sample rate in a digital oscilloscope is 2.5 times the bandwidth on all channels. 2.5:1 sample rate to bandwidth (SR/BW) is the ratio used (instead of the minimum 2) to take into account that the oscilloscope will not have a perfect brick-wall filter at the rated bandwidth. Less than the 2:1 SR/BW ratio will create the risk of aliasing of the digitally sampled input signal.

What is digital oscilloscope aliasing?

If the Nyquist sampling rate requirements are not met, the signal is considered undersampled and cannot be reconstructed with no loss of information. Instead, the reconstruction of the signal will still occur, but it will be an incorrect reconstruction, referred to as aliasing.

ReferencePart 3: What Is Oscilloscope Aliasing?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

What is digital oscilloscope spurious free dynamic range (SFDR)?

Spurious Free Dynamic Range (SFDR) is the ratio (usually expressed in dB) of the root-mean-square (RMS) amplitude of a fundamental oscilloscope input signal to the RMS amplitude of the next largest spurious signal in the oscilloscope output. SFDR is usually measured in the oscilloscope using an FFT or spectrum analyzer-like amplitude vs. frequency oscilloscope display. The spurious signals could be caused by distortion or other noise components, or could be at a frequency consistent with the core analog-to-digital converter (ADC) sampling frequency.

SFDR is one of the most misunderstood quality checks engineers perform on oscilloscopes. Any ADC is going to exhibit spurs at the sampling frequencies, and these spurs are usually of such low amplitude (compared to the input fundamental) and of such narrow frequency band that the SFDR ratio is well above (not as worse as) the baseline noise signal-to-noise ratio or signal-to-noise-and-disortion (SINAD) ratio for a given input frequency. Occasionally an oscilloscope might exhibit serious distortion components at specific frequencies, which is easily exposed by an SFDR test, but this is not common.

ReferenceComparing High Resolution Oscilloscope Design Approachesfor more details about SFDR in oscilloscopes.

ReferencePart 4: What Is Oscilloscope Spurious Free Dynamic Range (SFDR)?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

What are sampling oscilloscopes?

Properly called an equivalent-time sampling oscilloscope, a sampling oscilloscope provides one sample per trigger, with a small time delay added after each trigger so as to reconstruct a repetitive waveform from multiple triggered events. The measurement bandwidth is only limited by the frequency response of the sampler, which can be very high at very low cost. The limitation is that a sampling oscilloscope cannot capture a continuous waveform.

What are real-time oscilloscopes?

A real-time oscilloscope is often called a single-shot oscilloscope because it can capture a continuous time waveform in one continuous sample record. All the amplifier and analog-to-digital converter (ADC) components need to be rated for the full bandwidth of the acquired signal, so the cost per GHz of bandwidth is much higher than in a sampling oscilloscope.

What is the difference between a sampling oscilloscope and a real-time oscilloscope?

A sampling oscilloscope can only acquire a repetitive signal, whereas a real-time oscilloscope can acquire a continuous time waveform in one continuous sample record.

ReferencePart 6: What Is The Difference Between a Real-time Oscilloscope and a Sampling Oscilloscope?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

What is a digital phosphor oscilloscope (DPO)?

Digital Phosphor Oscilloscope (DPO) is a marketing term used by Tektronix to describe their oscilloscopes that utilize a fast waveform display architecture (more recently marketed as DPX Technology) to mimic the display appearance of a phosphor-beam CRT display used on an analog oscilloscope.

Some other oscilloscope manufacturers have similar features. All of them optimize for display update (refresh) at the expense of storing data, so if an anomaly is viewed during the fast update display, it cannot be saved or retrieved for further inspection. Furthermore, they are still based on digital capture techniques and therefore have large amounts of dead time during which they are not capturing (or displaying) waveforms (or anomalies). Oscilloscopes with fast update are typically usable only on very short acquisitions of repetitive signals, and the update rate degrades at longer (and more useful) time periods, and they are not very useful for viewing more than one signal at a time. In essence, the feature was conceived during a time when analog oscilloscopes were transitioning to digital oscilloscopes, and there is no longer much practical usage of this feature for most customers.

ReferencePart 9: What Is a Digital Phosphor Oscilloscope?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

Why would I want a fast update rate display on a digital oscilloscope?

A fast update rate display might provide usability and comfort to someone who is used to an analog oscilloscope (though most of these engineers have long since retired). They might also be useful to an engineer who is viewing a very short duration repetitive signal with many obvious anomalies. Engineers who are capturing longer, non-repetitive time intervals will probably find fast update rates to be an interesting feature that gets little use in real-world debugging.

What is an oscilloscope eye diagram or eye pattern?

Eye diagrams and eye patterns are display tools that are used to assess the signal quality of a digital signal by overlaying the digital levels for every bit (along with any transitions before or after each bit) to provide a quick visual assessment of the quality of the digital signal. Ideally, the eye diagram/pattern is very open in the middle with a clear top (digital 1 level), base (digital 0 level) and transitions (rising and falling edges of digital level transitions). Multi-level signals, such as PAM-3 or PAM-4, can also be displayed as eye diagrams.

An eye diagram and an eye pattern are two ways to describe the same thing.

ReferencePart 11: What Is an Oscilloscope Eye Diagram?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

How can I generate an eye diagram with an oscilloscope?

There are two basic methods to display an eye diagram using a digital oscilloscope.

The first method is the most basic but has the most limitations. An edge trigger is used to trigger on the 50% level of a rising or falling digital signal edge, with the timebase of the oscilloscope set to be a little longer than a single bit period, and the oscilloscope trigger point set to be about one quarter from the left edge of the oscilloscope grid. Display persistence is used to capture many short acquisitions of a single bit period, and the triggered signals are overlaid for visual observation. This method is intuitive but doesn’t provide an eye diagram of a continuous signal, doesn’t permit any type of post-processing to determine the cause of any eye diagram anomalies, and is affected by the added trigger jitter of the oscilloscope. It is a good, quick check whether a digital signal has good quality.

The second method is more robust and more widely used, especially with high-speed serial data signals. A long, continuous acquisition is made of a digital signal and the clock is extracted mathematically, with the extracted time period of the clock used to mathematically “slice” the continuous acquisition into bit periods that are overlaid to form the eye diagram. Since the data is continuous, additional mathematical processing may also be performed to simulate the use of a phase-locked loop (PLL) in the clock circuit, calculate jitter, measure various aspects of the eye opening (amplitude, width, etc.), and debug any anomalies present.

A sampling oscilloscope (described in an earlier FAQ) creates an eye diagram through the use of a hardware clock recovery circuit that works with the sampling module to create the eye diagram. This is generally considered an archaic method today and is not widely used unless the high-speed serial data signal can be completely analyzed and assessed with non-continuous (not real-time) data acquisitions. In that case, this method is perfectly satisfactory and is very low cost for the oscilloscope bandwidth provided. However, it does require different hardware anytime the signal has different bit rates or PLL requirements.

Name
Product Line Card

Oscilloscope, Protocol and Digitizer Products Line Card

Datasheet
Teledyne LeCroy Mid- to High-bandwidth Oscilloscopes Options and Accessories Catalog

Description of standard oscilloscope features, options and accessories provided with or available for mid-bandwidth to high-bandwidth oscilloscopes.

Datasheet
Teledyne LeCroy Low-bandwidth Oscilloscopes Options and Accessories Catalog

Description of standard oscilloscope features, options and accessories provided with or available for low-bandwidth oscilloscopes.

Datasheet
Application Notes

Shortcut to application notes for Teledyne LeCroy oscilloscopes.

Explore more
WaveMaster 8000HD Oscilloscope: Product Overview
MDA 8000HD Intro and Overview
HDO6000B Overview
More Videos
">

数字示波器资源

2024 示波器咖啡休息网络研讨会系列全部注册

第 1 部分:示波器分辨率、准确度和灵敏度之间有什么区别?

在本次网络研讨会中,我们将介绍示波器分辨率,以及即使不使用高分辨率示波器,如何优化分辨率。我们将介绍示波器电压测量的绝对精度如何取决于分辨率和噪声,以及精度如何根据示波器灵敏度设置而变化。

第 2 部分:什么是数字示波器 ADC 有效位和 ENOB?

在本次网络研讨会中,我们将解释模拟数字转换器 (ADC) 在示波器中的工作原理,以及 ADC 数字位规格如何受到 ADC 模拟部分性能的影响。这在有效位数 (ENOB) 规格中有所描述,或简称为有效位数。

第 3 部分:什么是数字示波器混叠?

在本次网络研讨会中,我们将解释示波器中的混叠、混叠在真实信号上的表现,以及如何通过了解示波器采样率与带宽的适当最小比率来避免混叠。

第 4 部分:什么是示波器无杂散动态范围 (SFDR)?

在本次网络研讨会中,我们将解释并举例说明示波器模数转换器 (ADC) 中的无杂散动态范围 (SFDR) 测量。我们还将提供建议,说明何时应关注 SFDR 性能以及何时可以有效忽略 ADC 杂散。

第 5 部分:什么是示波器偏移和位置?

在本次网络研讨会中,我们将解释示波器偏移和位置之间的区别、如何使用示波器测量信号直流偏移以及如何利用示波器偏移调整来简化电源轨和其他浮动信号的测量。最后,我们将解释应用示波器直流偏移如何降低绝对幅度测量的准确性。

第 6 部分:实时示波器和采样示波器有什么区别?

在本次网络研讨会中,我们从架构和典型应用的角度解释了实时示波器和采样示波器之间的区别。

第 7 部分:示波器探头如何影响我的示波器增益设置、精度、噪声和动态范围?

在本次网络研讨会中,我们将解释当探头连接到示波器输入时示波器会发生什么,以及探头连接后示波器的工作特性如何发生变化,即使用户没有意识到这一点。

第 8 部分:何时需要对示波器上的通道或探头进行去偏移?

在本次网络研讨会中,我们将解释什么是传播延迟,以及数字示波器上的去偏斜功能如何纠正示波器输入通道和探头之间的传播延迟差异。我们还将介绍何时应该花时间执行精确去偏斜,以及何时可以忽略此步骤。

第 9 部分:什么是数字荧光示波器?

在本次网络研讨会中,我们将解释数字荧光示波器 (DPO) 的含义,这是泰克用来描述其快速更新率技术的术语。我们还将概述快速更新率技术的优势和局限性。

第 10 部分:如何在示波器上使用滚动模式?

在本次网络研讨会中,我们将解释如何以及何时需要在示波器上使用滚动模式采集,此外还将提供有关使用滚动模式进行长时间采集的优点和局限性的一些详细信息。

第 11 部分:什么是示波器眼图?

在本次网络研讨会中,我们将解释什么是眼图以及它如何告诉我们串行数据信号的行为。此外,我们将解释创建眼图的各种方法,从最简单的边沿触发方法到使用信号时钟提取和带位叠加的数据切片的更稳健的方法。

第 12 部分:如何使用示波器测量抖动?

在此网络研讨会中,我们将解释什么是抖动以及各种类型的抖动测量,并简要介绍统计分析抖动数值的各种方法,评估抖动如何随时间变化(或调制),并涉及串行数据抖动测量和外推。

2023 示波器咖啡休息网络研讨会系列全部注册

第 1 部分:什么是数字示波器分辨率?

在本次网络研讨会中,我们讨论了什么是示波器垂直分辨率、更高的分辨率可以提供什么、如何最大限度地利用示波器分辨率以及如何区分高性能和低性能高分辨率示波器。

第 2 部分:我的示波器需要多少带宽?

在本次网络研讨会中,我们定义了模拟带宽,并回顾了它在示波器环境中的含义。我们还描述了您可能无意中降低示波器额定带宽的原因。

第 3 部分:上升时间与示波器带宽有何关系?

在本次网络研讨会中,我们讨论了信号上升时间和示波器带宽之间的关系,以及如何为您的应用选择合适的示波器带宽。

第 4 部分:数字示波器采样率是多少以及我需要多少?

在本次网络研讨会中,我们定义了什么是采样率以及高采样率能提供什么。我们还描述了信号和示波器所需的最低采样率和实际最高采样率。

第 5 部分:我的数字示波器需要使用多少内存?

在本次网络研讨会中,我们定义了数字示波器中的采集内存。我们还定义了采集内存、采样率和捕获时间之间的相互关系。

第 6 部分:如何降低数字示波器测量的信号噪声?

在本次网络研讨会中,我们将介绍示波器噪声的常见原因,以及如何降低示波器的加性噪声​​以提高测量结果的质量,而不管示波器的起始分辨率/噪声如何。

第 7 部分:如何使用示波器进行电流测量?

在本次网络研讨会中,我们将介绍使用示波器的电压输入获取和显示缩放电流信号的各种方法。我们还将介绍每种方法的优点和缺点。

第 8 部分:如何使用分流电阻在示波器上测量电流?

在本次网络研讨会中,我们提供了有关如何探测分流电阻两端的电压降的实用指导,以最大限度地降低噪声并准确测量示波器上的电流。

第 9 部分:如何使用无源探头在示波器上进行差分测量?

在本次网络研讨会中,我们将解释差分电压探头的工作原理以及如何使用两个无源探头在示波器上进行相同类型的测量。

第 10 部分:如何重新调整传感器以便与示波器一起使用?

在本次网络研讨会中,我们将描述用于获取传感器输出并将其重新缩放为适当且有用的非电压科学单位(如帕斯卡、伏特/米、韦伯、牛顿米、转/分 (RPM) 等)的各种技术,以便在示波器上显示为易于理解的波形。

第 11 部分:如何在示波器上制作 XY 显示?

在本次网络研讨会中,我们将提供 XY 图的典型示例以及如何创建它们以提供更完整的电路或系统运行图像。

第 12 部分:如何使用示波器进行三相功率测量?

在本次网络研讨会中,我们将对功率分析仪和示波器中使用的功率计算提供数学解释,以及这两种仪器如何识别计算值的功率周期。

2022 示波器咖啡休息网络研讨会系列全部注册

第 1 部分:提高示波器分辨率和动态范围的五个技巧

在本课程中,我们将推荐五条技巧和最佳实践,指导您如何通过使用示波器的全动态范围(无论是 8 位、10 位还是 12 位分辨率)来获得最佳测量精度和性能。

第 2 部分:如何校正示波器探头以获得最佳精度

在本课程中,我们将介绍如何消除时滞以消除定时误差。探头和/或通道之间的传播延迟差异可能会影响定时测量的准确性。我们将介绍最小化这些误差的方法。

第 3 部分:如何使用眼图测试低速串行数据信号完整性

在本课程中,我们将介绍如何使用示波器通过眼图对低速串行数据信号执行快速简单的信号完整性测试。

第 4 部分:50 Ω 还是 1 MΩ 耦合?这是个问题。

在本课程中,我们将探讨哪种示波器输入端接最好——1 MΩ 还是 50 Ω?何时应使用其中一种而不是另一种?它们有什么区别?

第五部分:如何设置 FFT 进行频域分析

在本课程中,我们将描述使用示波器查看频谱而非时间域中的信号捕获所能获得的洞察力。

第 6 部分:如何在示波器中使用统计数据和直方图

在本节中,我们将描述如何通过示波器的测量、测量统计数据和统计测量分布(直方图)快速识别电路问题。

第 7 部分:如何使用示波器轨迹或时间趋势进行调试

在本课程中,我们将介绍如何使用示波器的测量和跟踪或时间趋势功能来快速识别电路问题和意外的信号行为。

第 8 部分:如何使用示波器作为串行数模转换器 (DAC) 进行验证和调试

在本课程中,我们将介绍如何使用示波器从串行数据数字信息中提取模拟数据值,以验证和调试数字数据传输。

第 9 部分:如何使用示波器确认脉冲宽度调制 (PWM) 包络

在本课程中,我们将介绍如何使用示波器监视 PWM 信号并对其进行解调以显示调制包络,这可以与控制系统输入和系统操作预期进行比较。

第 10 部分:使用示波器缩放 - 缩放波形和时基调整

在本课程中,我们将介绍如何通过使用水平缩放控件以及更改时基和延迟设置来查看所获取信号的时序细节。我们将比较和对比这两种方法。

第 11 部分:使用示波器数字滤波器消除不需要的信号成分

在本节中,我们将描述如何通过使用数字滤波器去除示波器采集信号中不需要的信号成分。

第 12 部分:使用示波器通过/失败分析进行生产验证和调试

在本课程中,我们将介绍如何根据一组合格的测量条件测试信号以确定“通过”或“失败”的结果。

2021 示波器咖啡休息网络研讨会系列全部注册

第 1 部分:正确设置示波器

在本课程中,我们将重点介绍关键的垂直、时基和触发设置,以确保使用示波器进行最高精度、精确度和效率测量。

第 2 部分:优化显示以及使用光标和测量

在本课程中,我们将使用示波器的显示和测量工具来验证我们电路的性能并确认设计裕度已经实现。

第 3 部分:让触发器执行您想要的操作

现在是电路调试时间!在本课程中,我们使用示波器的触发功能来确定从哪里开始调查以查找麻烦的电路问题。

第 4 部分:设置时间基准并正确使用内存

在本课程中,我们将回顾如何设置示波器的时间基准,并了解内存长度和采样率如何影响我们的结果。

第 5 部分:优化示波器垂直增益

在本节中,我们回顾示波器垂直增益以及我们为什么要关心它。

第 6 部分:测试噪声电源输出

在本课程中,我们将回顾哪些探头最适合您的应用,以及如何最佳地连接到您的示波器以最大限度地减少射频拾取。

第七部分:去耦电容降噪调试

在本次课程中,我们将讨论当输出电容器的变化没有影响时如何降低电源输出噪声。

第 8 部分:测量上升时间和传播延迟

在本节中,我们将重点测量电源的启动和输出性能。

第 9 部分:查找间歇性故障的根本原因

在本课程中,我们将重点介绍示波器工具,以帮助我们在运行电路验证测试时识别测量异常值、确认其发生率并确定根本原因。

第 10 部分:测量电源瞬态响应下降水平

在本次会议中,我们将讨论测量电源对瞬态事件的响应的最佳实践和技术。

第 11 部分:查找高频噪声

在本课程中,我们将使用示波器工具和探头来了解电源电路中的潜在串扰或传导发射。

第 12 部分:验证 1% 噪声裕度

在本次课程中,我们将探讨示波器测量工具如何帮助我们达到 1% 的电源输出噪声裕度。

什么是示波器?

示波器是一种捕获输入电压信号并将其转换为正确缩放的电压与时间波形的设备,该波形显示在缩放网格上。示波器有一个触发电路,用于定义何时捕获和显示输入信号,还有一个可变增益前端,允许(垂直电压)信号调整以接受各种输入信号幅度。水平(时基或扫描)调整定义了获取信号的时间段。

谁发明了示波器?

ttps://www.teledynelecroy.com/walter-lecroy.

">

许多人都声称自己发明了模拟示波器,但泰克却可以理直气壮地声称自己发明了第一台触发扫描(模拟)示波器,这极大地提高了仪器的实用性和多功能性。

ttps://www.teledynelecroy.com/walter-lecroy. ">1985 年,Walter LeCroy 及其在 LeCroy Corporation(现为 Teledyne LeCroy)的设计团队发布了第一台数字存储示波器(DSO,现在简称为数字示波器)——型号 9400——它复制并改进了当时使用的模拟示波器的功能和性能。型号 9400 的带宽(125 MHz)相当于模拟示波器(当时)的带宽,可以使用 32,000 个采样点(在当时,这是一个非常长的采集记录长度)连续捕获长时间的信号。可以断言 LeCroy 的 WD2000 波形数字化仪(于 1971 年推出)是第一台数字存储示波器,但记录长度限制为 20 个采样点,并且架构无法轻松扩展到更长的记录长度。在此处阅读完整故事 hhttps://www.teledynelecroy.com/沃尔特·勒克罗伊.

什么是模拟示波器?

模拟示波器使用阴极射线管 (CRT) 显示电信号的电压随时间的变化。CRT 光束从触发电路定义的位置开始,在规定的时间内扫描 CRT。(水平)时间段称为(光束)扫描。可变增益前端放大器设置扫描期间 CRT 光束的最大垂直偏转。CRT 光束强度在扫描后会迅速衰减,因此模拟示波器非常适合查看重复信号,但不太适合查看间歇信号。通常使用记录设备(例如宝丽来相机)拍摄与间歇触发事件同步的 CRT 照片。

什么是数字示波器?

数字示波器使用模拟数字转换器 (ADC) 以离散时间间隔垂直采样模拟输入信号,然后将模拟输入信号转换为定义量化级别的数字采样点。当数字采样点连接在一起时,它们可以忠实地表示模拟信号。数字示波器的特征是 ADC 中的垂直级别数,以 N 位表示,其中 2N定义每个采样点可以区分的最大离散垂直量化级别数。每个采样点都存储在内存缓冲区中,以供显示或进一步进行某种数学处理。

什么是数字存储示波器 (DSO)?

数字存储示波器只是数字示波器的另一个术语,反映出采样点存储在内存缓冲区中。

谁发明了数字示波器?

https://www.teledynelecroy.com/walter-lecroy.

">

https://www.teledynelecroy.com/walter-lecroy. ">1985 年,Walter LeCroy 及其在 LeCroy Corporation(现为 Teledyne LeCroy)的设计团队发布了第一台数字存储示波器(DSO,现在简称为数字示波器)——型号 9400——它复制并改进了当时使用的模拟示波器的功能和性能。型号 9400 的带宽(125 MHz)相当于模拟示波器(当时)的带宽,并且可以使用 32,000 个采样点(在当时,这是一个非常长的采集记录长度)连续捕获长时间的信号。可以断言 LeCroy 的 WD2000 波形数字化仪(于 1971 年推出)是第一台数字存储示波器,但记录长度限制为 20 个采样点,并且架构无法轻松扩展到更长的记录长度。在此处阅读完整故事https://www.teledynelecroy.com/walter-lecroy.

模拟示波器和数字示波器有什么区别?

模拟示波器使用阴极射线管 (CRT) 在 CRT 上显示荧光迹线,迹线显示与电输入信号一致的连续电压与时间波形,迹线强度随时间快速衰减。数字示波器将模拟电输入信号转换为数字采样点,这些数字采样点连接在一起时可正确再现模拟波形,重建的波形显示在 LCD 显示屏上,数字采样点可进一步处理以进行测量或计算数学函数。

数字示波器和数字化仪有什么区别?

数字化仪通常是机架式安装的,可以连接起来测量比典型示波器多得多的通道,但缺少可变增益前端放大器、耦合选择、前面板、显示器和大多数人认为示波器理所当然的其他功能。

如何用示波器测量非电压信号?

Part 7: How Do I Make a Current Measurement with an Oscilloscope?andPart 8: How Do I Measure Current on an Oscilloscope Using a Shunt Resistor?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.

">

示波器接受电压信号作为输入。必须使用探头或传感器将非电压信号(例如,电流信号、磁场信号)转换为电压信号,并以适当的单位正确缩放。示波器制造商通常提供用于测量电流的探头或传感器,而用于测量其他单位的传感器也随处可见。大多数专业级示波器都支持常见的重新缩放(例如,从伏特到安培)和许多其他单位,但如果这是您要求的重要功能,最好在购买前检查示波器是否支持重新缩放,尤其是当传感器具有非线性输入输出比时。

Part 7: How Do I Make a Current Measurement with an Oscilloscope?andPart 8: How Do I Measure Current on an Oscilloscope Using a Shunt Resistor?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.">参考网络研讨会第 7 部分:如何使用示波器进行电流测量?第 8 部分:如何使用分流电阻在示波器上测量电流?2023 年示波器咖啡休息网络研讨会系列中的其他详细信息。

示波器的带宽是多少?

IEEE 1057 Standard for Digitizing Waveform Recordersspecifies the analog bandwidth of a digital oscilloscope as the frequency at which the amplitude response is -3 dB (which equates to 70.7%) of the response at the reference frequency (which for an oscilloscope is DC). While it may seem confusing to have an analog bandwidth specification in a digital oscilloscope, the digital oscilloscope has many analog amplifier components prior to the portion that digitizes and stores the signal.

">

IEEE 1057 Standard for Digitizing Waveform Recordersspecifies the analog bandwidth of a digital oscilloscope as the frequency at which the amplitude response is -3 dB (which equates to 70.7%) of the response at the reference frequency (which for an oscilloscope is DC). While it may seem confusing to have an analog bandwidth specification in a digital oscilloscope, the digital oscilloscope has many analog amplifier components prior to the portion that digitizes and stores the signal.">这个IEEE 1057 数字化波形记录器标准将数字示波器的模拟带宽指定为幅度响应为参考频率(对于示波器而言为 DC)响应的 -3 dB(相当于 70.7%)的频率。虽然在数字示波器中设置模拟带宽规格似乎令人困惑,但数字示波器在数字化和存储信号的部分之前有许多模拟放大器组件。

示波器需要多少带宽?

Part 2: How Much Bandwidth Do I Need in My Oscilloscope?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.

">

捕获和测量信号所需的带宽在很大程度上取决于要测量的信号、要进行的测量类型以及测量所需的精度。大多数工程师使用的粗略经验法则是使用带宽为其想要测量的最高频率信号的三倍的示波器,尽管这对于非常高频的信号来说并不切实际。

请参阅 FAQ(上文)中示波器带宽的定义。大多数示波器会缓慢接近 -3 dB 带宽额定频率,从带宽频率额定值的 50%(左右)开始,幅度会缓慢下降。这意味着,如果示波器幅度响应在额定带宽的 1% 时为 -70 dB,在额定带宽的 2% 时为 -85 dB,那么捕获的纯正弦波的幅度将约为输入正弦波频率接近示波器带宽额定值时的 90%(-1 dB)或 80%(-2 dB)和 70%(-3 dB)。但是,大多数工程师不会用示波器测量纯正弦波。请注意,由于各种原因,最高带宽的示波器可能具有更平坦(幅度下降较少)或可调的幅度响应。

更可能的是,工程师正在测量一个类似于方波的信号。在这种情况下,众所周知,方波可以表示为傅里叶级数展开,由基频和奇次谐波之和组成,其中第 N 次谐波在该频率下贡献 1/N 的幅度。这意味着要准确地表示方波,您需要足够的带宽来捕获基频和足够的奇次谐波。多少个奇次谐波是“足够的”(以及需要多少带宽)取决于工程师对示波器上比实际信号慢的上升时间测量的容忍度,以及测量信号上存在的附加过冲和振铃量。如果只捕获第 3 次谐波,上升时间将明显变慢,与捕获第 99 次谐波相比,过冲和振铃将更加明显(在这种情况下,捕获的信号将与原始输入信号无法区分)。

这让我们回到“需要多少带宽?”这个问题最常给出的原始答案——大约是最高频率信号带宽的 3 倍。但“最高频率”是什么意思呢?在这种情况下,大多数工程师都在考虑示波器的上升时间测量能力(与带宽有关)。如果工程师想要测量上升时间为 1 ns 的信号,他们不会选择上升时间为 1 ns 的示波器(这种示波器的带宽通常为 350 MHz)——他们会选择带宽为 3 倍(或 1 GHz)的示波器。

Part 2: How Much Bandwidth Do I Need in My Oscilloscope?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.">参考网络研讨会第 2 部分:我的示波器需要多少带宽?2023 年示波器咖啡休息网络研讨会系列中的其他详细信息。

什么是数字示波器分辨率?

Comparing High Resolution Oscilloscope Design Approachesfor more details on that tradeoffs that many oscilloscope manufacturers make when designing high-resolution oscilloscopes. Reference webinarPart 1: What is Oscilloscope Resolution?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.

">

Comparing High Resolution Oscilloscope Design Approachesfor more details on that tradeoffs that many oscilloscope manufacturers make when designing high-resolution oscilloscopes. Reference webinarPart 1: What is Oscilloscope Resolution?in the 2023 Oscilloscope Coffee Break Webinar Series for other details. ">分辨率是模数转换器 (ADC) 量化级别的数量,N 位 ADC 具有 2N量化级别。例如,8 位示波器有 2 8= 256 个量化级别,而 12-bit 示波器有2 12= 4096 个量化级别。请注意,ADC 中的位数(量化级别)并不能保证示波器信号路径的其余部分(特别是模拟组件)具有与高分辨率 ADC 相称的噪声性能。因此,宣传的高分辨率示波器的性能可能与传统的 8 位分辨率示波器没有什么不同。参考 高分辨率示波器设计方法比较详细了解许多示波器制造商在设计高分辨率示波器时做出的权衡。参考网络研讨会第 1 部分:什么是示波器分辨率?2023 年示波器咖啡休息网络研讨会系列中的其他详细信息。

什么是高分辨率示波器?

Comparing High Resolution Oscilloscope Design Approachesfor more details.

">

Comparing High Resolution Oscilloscope Design Approachesfor more details.">高分辨率示波器是指任何宣传为高分辨率的示波器,它使用改进的硬件、软件过滤(降低带宽和采样率)或两者结合,与传统的 8 位示波器相比,可提供更高的分辨率和信噪比。高分辨率的营销宣传并不能保证实际性能。ADC 特有的高分辨率宣传,或仅在降低带宽的情况下才能改善基线噪声或信噪比,都是危险信号,表明所谓的高分辨率在所有正常示波器操作条件下都无法实现。参考高分辨率示波器设计方法比较了解更多详情。

高分辨率示波器和高清示波器有什么区别?

没有区别——这只是表达同一件事的两种方式,但需要注意的是,Teledyne LeCroy 拥有 High Definition Oscilloscope 名称和缩写 HDO 的注册商标,它是第一家提供 12-bit 高分辨率示波器始终提供 12 位,且不会降低采样率或带宽。

什么是混合信号示波器 (MSO)?

混合信号示波器 (MSO) 通常是指具有模拟和数字(逻辑)输入通道的示波器。常见配置是 4 个模拟输入通道加上 16 个数字逻辑输入通道。数字逻辑输入通道可以将较稀缺(且较昂贵)的模拟输入通道保留用于需要其功能的信号,而数字逻辑输入通道可用于简单的切换或逻辑信号,或低速串行数据(例如 I2C、SPI、UART 等)信号。

什么是混合域示波器 (MDO)?

混合域示波器 (MDO) 是一个营销术语,指的是提供某种射频 (RF) 输入或转换以捕获时域和频域信号的示波器。如果提供专用的 RF 输入,其功能可以与频谱分析仪类似。可以使用软件快速傅立叶变换 (FFT) 技术提供类似的功能,而无需专用(且昂贵的)RF 输入。

示波器的准确度是多少?

Part 1: What Is the Difference Between Oscilloscope Resolution, Accuracy and Sensitivity?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

">

示波器的幅度精度由许多不同的组件组成,并将根据示波器的分辨率、输入路径、输入频率内容、是否使用探头等而变化。幅度精度范围可以从优于 1%(对于 12-bit 对于使用有线信号输入的高清示波器 (HDO®),对于使用有源探头(通过 5 Ω 终端连接到示波器)的 8 位示波器,精度可达 50%(或更高)。虽然这些精度与数字电压表 (DVM) 相比似乎较低,但示波器提供的功能远多于 DVM。

Part 1: What Is the Difference Between Oscilloscope Resolution, Accuracy and Sensitivity?in the 2024 Oscilloscope Coffee Break Webinar Series for more details. ">参考法案第 1 部分:示波器分辨率、准确度和灵敏度之间有什么区别?有关更多详细信息,请参阅 2024 年示波器咖啡休息网络研讨会系列。

什么是示波器灵敏度?

Part 1: What Is the Difference Between Oscilloscope Resolution, Accuracy and Sensitivity?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

">

Part 1: What Is the Difference Between Oscilloscope Resolution, Accuracy and Sensitivity?in the 2024 Oscilloscope Coffee Break Webinar Series for more details. ">灵敏度是示波器中可以观察到的最小信号变化。与灵敏度较低的示波器相比,灵敏度较高的示波器可用于观察较小的信号。示波器上的灵敏度调整是使用垂直增益设置(伏/分度)进行的。请注意,高灵敏度并不一定与高精度相关,并且表示高灵敏度的模拟垂直增益设置(例如 1 或 2 mV/分度)的实用性可能会受到示波器中的 ADC 分辨率或噪声的限制。参考第 1 部分:示波器分辨率、准确度和灵敏度之间有什么区别?有关更多详细信息,请参阅 2024 年示波器咖啡休息网络研讨会系列。

如何将示波器的上升时间与带宽关联起来?

Part 3: How Is Rise Time Related to Bandwidth in an Oscilloscope?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.

">

从历史上看,工程师会认为上升时间与带宽有关,公式为 TR(s) = 0.35/带宽 (Hz),其中 TR 为 10-90% 的上升时间(IEEE 定义)。在示波器带宽非常低(1 GHz 或更低)且幅度下降非常缓慢的时代,此公式(大部分)是正确的。对于较低带宽的示波器,此公式仍然适用。

当今带宽更高的示波器(或具有更复杂、噪声更低的信号路径的示波器)可能遵循 TR(s) = 0.35/带宽 (Hz) 公式(适用于产品线较低(带宽)端的型号),但遵循 TR(s) = 0.4/带宽 (Hz) 或可能接近 TR(s) = 0.45/带宽 (Hz)(在某些情况下更高)适用于最大带宽型号。较低带宽型号中分子较低的原因是,与最高带宽型号相比,它们可能使用具有更多高频余量的模拟信号路径,以实现更慢的幅度下降。在产品系列中带宽最高的示波器型号上,模拟信号路径可能已达到幅度响应的硬上限,并且幅度响应会迅速下降,超过该上限,由于超出示波器的带宽额定值后高频响应高度衰减,导致上升时间更慢(分子更高)。

Part 3: How Is Rise Time Related to Bandwidth in an Oscilloscope?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.">参考网络研讨会第 3 部分:上升时间与示波器带宽有何关系?2023 年示波器咖啡休息网络研讨会系列中的其他详细信息。

数字示波器的采样率是多少?

Part 4: What Is Oscilloscope Sample Rate and How Much Do I Need?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.

">

数字示波器通过模拟数字转换器 (ADC) 将信号数字化,ADC 会采样并保持电压值以创建离散采样点。采样点以给定频率(时间间隔)记录,采样率称为“样本/秒”。

Part 4: What Is Oscilloscope Sample Rate and How Much Do I Need?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.">参考网络研讨会第 4 部分:示波器采样率是多少以及我需要多少?2023 年示波器咖啡休息网络研讨会系列中的其他详细信息。

我的数字示波器需要多少采样率?

Part 2: How Much Bandwidth Do I Need in My Oscilloscope?in the 2023 Oscilloscope Coffee Break Webinar Series for other details, or the similarly titled FAQ), then 5 to 10 sample points on a rising edge is easily accommodated.

Reference webinarPart 4: What Is Oscilloscope Sample Rate and How Much Do I Need?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.

">

根据奈奎斯特定理,所需的最小采样率是您希望测量的频率的两倍。在数字示波器中,这通常被解释为采样率,并且必须至少为示波器带宽额定值的两倍。但是,示波器通常不会在带宽额定值之外出现砖墙式幅度响应,并且它会传递一些超出带宽额定值的高频内容。因此,大多数示波器提供的最小采样率与带宽比为 2.5。这可以被视为从数字采样点重建正弦波的最小值。

Part 2: How Much Bandwidth Do I Need in My Oscilloscope?in the 2023 Oscilloscope Coffee Break Webinar Series for other details, or the similarly titled FAQ), then 5 to 10 sample points on a rising edge is easily accommodated.">为了从数字采样点准确重建更复杂的信号形状,工程师通常需要在上升沿上采样 5 个或最多 10 个采样点。如果工程师遵循选择示波器速度比他们想要测量的信号快三倍的常见经验法则(参考网络研讨会第 2 部分:我的示波器需要多少带宽?在 2023 年示波器咖啡休息网络研讨会系列中了解其他详细信息,或类似标题的常见问题解答),那么上升沿上的 5 到 10 个采样点就很容易容纳了。

Part 4: What Is Oscilloscope Sample Rate and How Much Do I Need?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.">参考网络研讨会第 4 部分:示波器采样率是多少以及我需要多少?2023 年示波器咖啡休息网络研讨会系列中的其他详细信息。

什么是数字示波器的采集存储器?

采集存储器用于存储数字示波器采样点,以便调用到显示器或进行进一步处理以进行测量、执行数学计算等。

数字示波器采集内存与 CPU 内存有何不同?

示波器采集存储器存储数字化信号的示波器采样点,而为示波器功能供电的中央处理单元 (CPU) 拥有自己的随机存取存储器 (RAM) 来满足 CPU 的需求。

数字示波器的存储深度是什么意思?

内存深度只是描述采集内存总长度的另一种方式,无论是以点(例如千点 (kpts)、兆点 (Mpts单位为单位,例如:千兆点(Gpts)、或样本(例如:百万样本(MS))。

示波器采集需要多少个样本?

更多的样本(或点)提供了在需要降低采样率之前捕获非常长的连续时间间隔的能力。工程师需要多少个样本取决于工程师希望捕获的信号带宽、工程师希望捕获这些信号的时间分辨率以及工程师希望获取的连续时间量。

数字示波器中的采样率和采集内存有何关系?

如果示波器的采样率为 10 GS/s,采集内存为 1 GS(或 Gpts),则它可以采集 100 毫秒的时间(1 GS / 10 GS/s = 0.1 秒,或 100 毫秒)。如果希望使用 200 GS 采集内存捕获 1 毫秒,则采样率必须降低到 5 GS/s,这可能是(也可能不是)可接受的。

示波器中的基线噪声是什么?

Comparing High Resolution Oscilloscope Design Approachesfor more details about various types of noise in oscilloscopes.

">

示波器基线噪声是没有信号连接到示波器输入通道时测得的 AC RMS 值。当示波器输入端没有信号时,简单的基线噪声测试将提供噪声性能的一般指示。虽然此测试简单易行,但它并不是最真实的示波器性能测试,因为大多数示波器都是在连接输入信号的情况下使用的。尽管如此,噪声不会在添加输入信号时降低,因为增加的信号幅度只会在以后的测量中增加噪声。因此,基线噪声可以成为粗略评估整体性能的有用测试。

请注意,在 Teledyne LeCroy 示波器中,SDEV 测量值等于 AC RMS。

Comparing High Resolution Oscilloscope Design Approachesfor more details about various types of noise in oscilloscopes. ">参考法案高分辨率示波器设计方法比较有关示波器中各种类型噪声的更多详细信息。

示波器的信噪比 (SNR) 是什么?

Comparing High Resolution Oscilloscope Design Approachesfor more details about various types of noise in oscilloscopes.

">

信噪比是满量程范围除以基线噪声的比率计算得出的,以伏特为单位,按照以下公式表示:

信噪比(dB)= 20*log10((V全尺寸/(2*√2))/V交流有效值))

带V全尺寸为示波器上的满量程电压(等于垂直格数 * V/div 增益设置)和 V交流有效值是给定 V/div 增益设置下基线信号的 AC RMS 值。

请注意,某些示波器(例如 Keysight、Teledyne LeCroy)的满量程有 8 个垂直分度,而其他示波器(例如 Tektronix)的满量程有 10 个垂直分度。

请注意,Teledyne LeCroy 的 AC RMS 测量名为 SDEV,而其他示波器通常具有可选择为 AC 或 DC 读数的 RMS 测量。务必使用 AC RMS 值,否则 SNR 计算将错误地包括示波器通道中任何小 DC 偏移误差的影响。

信噪比(dB) = 20*log10( (V/div*8/(2*sqrt(2)))/noise_in_rms)

Comparing High Resolution Oscilloscope Design Approachesfor more details about various types of noise in oscilloscopes. ">参考法案高分辨率示波器设计方法比较有关示波器中各种类型噪声的更多详细信息。

示波器中的信噪失真比(SINAD 或 SNDR)是什么?

Comparing High Resolution Oscilloscope Design Approachesfor more details about various types of noise in oscilloscopes.

">

根据 IEEE 标准 1057(IEEE 数字化波形记录器标准),SINAD 是均方根 (rms) 信号与均方根 (基线) 噪声和失真之比。SINAD 是使用正弦波输入在特定频率和幅度下测量的,测量时的幅度会影响失真,因此应指定(通常为满量程幅度的 90%)。SINAD 是示波器在实际操作中性能的更完整测量。

Comparing High Resolution Oscilloscope Design Approachesfor more details about various types of noise in oscilloscopes. ">参考法案高分辨率示波器设计方法比较有关示波器中各种类型噪声的更多详细信息。

如何减少示波器测量的信号的噪声?

Comparing High Resolution Oscilloscope Design Approachesfor more details about tradeoffs made to reduce noise in oscilloscopes. Reference webinarPart 6: How Can I Reduce Noise on Signals Measured With an Oscilloscope?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.

&nbsp;

">

降低示波器测量信号噪声的最佳方法是使用低噪声、高分辨率示波器,该示波器可在全带宽下提供 12 位分辨率。但任何示波器都可以使用模拟硬件或数字软件滤波器来降低噪声,前提是降低带宽以换取降低噪声的权衡是可以接受的。

硬件滤波器通常在通道菜单中显示为 20 MHz 或 200 MHz(或类似)带宽限制。这些滤波器的衰减速度往往非常慢,因此其降噪能力可能低于数字软件滤波器。

数字软件滤波器可能是数学函数,可能是高分辨率模式,也可能是通道菜单中的软件滤波器选项(例如,Teledyne LeCroy 的增强分辨率 (ERes) 选项)。从数学上讲,采样率(和带宽)每减半,噪声就会降低 3 dB(~30%,或 0.5 个有效位)。有时,数字软件滤波器会在数学滤波操作后插入采样点,但硬件采样率仍然会降低。

应对高分辨率模式保持警惕,因为它承诺的性能比数学上可能的更好,或者是在 8 位分辨率示波器中实现高分辨率(和更低噪音)的唯一手段。

Comparing High Resolution Oscilloscope Design Approachesfor more details about tradeoffs made to reduce noise in oscilloscopes. Reference webinarPart 6: How Can I Reduce Noise on Signals Measured With an Oscilloscope?in the 2023 Oscilloscope Coffee Break Webinar Series for other details.">参考法案高分辨率示波器设计方法比较了解有关降低示波器噪声的权衡取舍的更多详细信息。参考网络研讨会第 6 部分:如何降低示波器测量的信号噪声?2023 年示波器咖啡休息网络研讨会系列中的其他详细信息。

 

示波器中的“有效位数”(ENOB)是什么意思?

Comparing High Resolution Oscilloscope Design Approachesfor more details about various types of noise and why the ADC rated number of bits isn’t fully achieved when deployed in digitizers or oscilloscopes.

ReferencePart 2: What Are Oscilloscope ADC Effective Bits and ENOB?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

">

示波器 ENOB 是通过测量示波器 SINAD 得出的,如下所示:

示波器 ENOB= (SINAD-1.76)/6.02

如果前端放大器不是示波器系统中的主要噪声源,则系统 ENOB 将接近 ADC 的 ENOB。重要的是要了解 ADC ENOB 是系统性能的上限,但系统性能才是需要了解的关键性能。实际上,示波器(系统)ENOB 始终小于 ADC ENOB。

如果施加的输入信号不是 100% 满量程幅度,则 ENOB 可由下式得出:

示波器 ENOB= (SINAD-1.76+20 log((满量程幅度)/(输入幅度)))/6.02

从该公式可以推断出每有效位 6 dB SINAD 的“经验法则”。因此,半个有效位的改进相当于噪声降低 3 dB (30%),而一个完整有效位的改进相当于噪声降低 6 dB (50%)。ENOB 的微小差异对垂直(电压幅度)噪声而言意义重大。

Comparing High Resolution Oscilloscope Design Approachesfor more details about various types of noise and why the ADC rated number of bits isn’t fully achieved when deployed in digitizers or oscilloscopes.">参考法案高分辨率示波器设计方法比较有关各种类型噪声的更多详细信息,以及为什么在数字化仪或示波器中部署时 ADC 额定位数无法完全达到。

Part 2: What Are Oscilloscope ADC Effective Bits and ENOB?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.">参考法案第 2 部分:什么是示波器 ADC 有效位和 ENOB?有关更多详细信息,请参阅 2024 年示波器咖啡休息网络研讨会系列。

示波器模数转换器 (ADC) ENOB 与示波器 ENOB 相同吗?

Comparing High Resolution Oscilloscope Design Approachesfor more details about various types of noise and why the ADC rated number of bits isn’t fully achieved when deployed in digitizers or oscilloscopes.

ReferencePart 2: What Are Oscilloscope ADC Effective Bits and ENOB?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

">

ADC ENOB 是示波器 ENOB 的上限,但示波器 ENOB 是需要了解的关键性能。实际上,示波器 ENOB 始终小于 ADC ENOB。如果示波器对其 ADC 的 ENOB 性能做出具体声明,则可能是整个示波器 ENOB 性能要低得多的危险信号。

Comparing High Resolution Oscilloscope Design Approachesfor more details about various types of noise and why the ADC rated number of bits isn’t fully achieved when deployed in digitizers or oscilloscopes.">参考法案高分辨率示波器设计方法比较有关各种类型噪声的更多详细信息,以及为什么在数字化仪或示波器中部署时 ADC 额定位数无法完全达到。

Part 2: What Are Oscilloscope ADC Effective Bits and ENOB?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.">参考法案第 2 部分:什么是示波器 ADC 有效位和 ENOB?有关更多详细信息,请参阅 2024 年示波器咖啡休息网络研讨会系列。

什么是奈奎斯特定理?它与数字示波器有何关系?

奈奎斯特定理指出,只要以正弦波频率的两倍(或更多)进行数字采样,就可以重建正弦波而不会丢失信息。通常,这意味着数字示波器中的最小采样率为所有通道带宽的 2.5 倍。2.5:1 采样率与带宽 (SR/BW) 是使用的比率(而不是最小值 2),以考虑到示波器在额定带宽下不会有完美的砖墙滤波器。小于 2:1 的 SR/BW 比率将导致数字采样输入信号混叠的风险。

什么是数字示波器混叠?

Part 3: What Is Oscilloscope Aliasing?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

">

如果不符合奈奎斯特采样率要求,则认为信号采样不足,无法在不丢失信息的情况下重建信号。相反,信号重建仍会发生,但重建不正确,称为混叠。

Part 3: What Is Oscilloscope Aliasing?in the 2024 Oscilloscope Coffee Break Webinar Series for more details. ">参考法案第 3 部分:什么是示波器混叠?有关更多详细信息,请参阅 2024 年示波器咖啡休息网络研讨会系列。

什么是数字示波器的无杂散动态范围(SFDR)?

Comparing High Resolution Oscilloscope Design Approachesfor more details about SFDR in oscilloscopes.

ReferencePart 4: What Is Oscilloscope Spurious Free Dynamic Range (SFDR)?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

">

无杂散动态范围 (SFDR) 是示波器基本输入信号的均方根 (RMS) 幅度与示波器输出中第二大杂散信号的 RMS 幅度之比(通常以 dB 表示)。SFDR 通常在示波器中使用 FFT 或频谱分析仪之类的幅度与频率示波器显示来测量。杂散信号可能是由失真或其他噪声成分引起的,也可能是与核心模数转换器 (ADC) 采样频率一致的频率。

SFDR 是工程师在示波器上执行的最容易被误解的质量检查之一。任何 ADC 都会在采样频率下显示杂散,这些杂散通常幅度很低(与输入基波相比)且频带很窄,因此 SFDR 比率远高于(而不是更差)给定输入频率的基线噪声信噪比或信噪比加失真 (SINAD) 比。有时示波器可能会在特定频率下显示严重的失真分量,这很容易通过 SFDR 测试发现,但这种情况并不常见。

Comparing High Resolution Oscilloscope Design Approachesfor more details about SFDR in oscilloscopes.">参考法案高分辨率示波器设计方法比较有关示波器中的 SFDR 的更多详细信息。

Part 4: What Is Oscilloscope Spurious Free Dynamic Range (SFDR)?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.">参考法案第 4 部分:什么是示波器无杂散动态范围 (SFDR)?有关更多详细信息,请参阅 2024 年示波器咖啡休息网络研讨会系列。

什么是采样示波器?

采样示波器实际上被称为等效时间采样示波器,它每次触发提供一次采样,每次触发后添加一个短暂的时间延迟,以便从多个触发事件中重建重复波形。测量带宽仅受采样器频率响应的限制,采样器的频率响应可以非常高,但成本却非常低。限制在于采样示波器无法捕获连续波形。

什么是实时示波器?

实时示波器通常被称为单次示波器,因为它可以在一次连续采样记录中捕获连续时间波形。所有放大器和模数转换器 (ADC) 组件都需要针对所采集信号的全带宽进行额定,因此每 GHz 带宽的成本比采样示波器高得多。

采样示波器和实时示波器有什么区别?

Part 6: What Is The Difference Between a Real-time Oscilloscope and a Sampling Oscilloscope?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

">

采样示波器只能采集重复信号,而实时示波器可以在一次连续的采样记录中采集连续时间波形。

Part 6: What Is The Difference Between a Real-time Oscilloscope and a Sampling Oscilloscope?in the 2024 Oscilloscope Coffee Break Webinar Series for more details. ">参考法案第六部分:实时示波器和采样示波器有什么区别?有关更多详细信息,请参阅 2024 年示波器咖啡休息网络研讨会系列。

什么是数字荧光示波器(DPO)?

Part 9: What Is a Digital Phosphor Oscilloscope?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

">

数字荧光示波器 (DPO) 是泰克公司的营销术语,用于描述他们的示波器,该示波器采用快速波形显示架构(最近以 DPX 技术销售)来模仿模拟示波器上使用的荧光束 CRT 显示器的显示外观。

其他一些示波器制造商也具有类似的功能。它们都以牺牲数据存储为代价来优化显示更新(刷新),因此如果在快速更新显示期间看到异常,则无法保存或检索以进行进一步检查。此外,它们仍然基于数字捕获技术,因此具有大量死区时间,在此期间它们不会捕获(或显示)波形(或异常)。具有快速更新的示波器通常仅适用于非常短的重复信号采集,更新率会在较长(且更有用)的时间段内降低,并且它们对于一次查看多个信号不是很有用。本质上,该功能是在模拟示波器过渡到数字示波器时构思出来的,对于大多数客户来说,该功能不再有太多实际用途。

Part 9: What Is a Digital Phosphor Oscilloscope?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.">参考法案第 9 部分:什么是数字荧光示波器?有关更多详细信息,请参阅 2024 年示波器咖啡休息网络研讨会系列。

为什么我希望在数字示波器上显示快速更新率?

对于习惯使用模拟示波器的人来说,快速更新率显示可能会提供可用性和舒适性(尽管这些工程师中的大多数早已退休)。对于正在查看持续时间非常短且有许多明显异常的重复信号的工程师来说,它们可能也很有用。捕获较长的非重复时间间隔的工程师可能会发现快速更新率是一个有趣的功能,但在实际调试中用处不大。

什么是示波器眼图或眼图图案?

Part 11: What Is an Oscilloscope Eye Diagram?in the 2024 Oscilloscope Coffee Break Webinar Series for more details.

">

眼图和眼图模式是一种显示工具,用于评估数字信号的信号质量,方法是将每个位的数字电平(以及每个位之前或之后的任何转换)叠加在一起,以快速直观地评估数字信号的质量。理想情况下,眼图/模式在中间非常开阔,顶部(数字 1 电平)、底部(数字 0 电平)和转换(数字电平转换的上升沿和下降沿)清晰。多电平信号(例如 PAM-3 或 PAM-4)也可以显示为眼图。

眼图和眼图模式是描述同一事物的两种方式。

Part 11: What Is an Oscilloscope Eye Diagram?in the 2024 Oscilloscope Coffee Break Webinar Series for more details. ">参考法案第 11 部分:什么是示波器眼图?有关更多详细信息,请参阅 2024 年示波器咖啡休息网络研讨会系列。

如何用示波器生成眼图?

使用数字示波器显示眼图有两种基本方法。

第一种方法是最基本的,但限制也最多。边沿触发用于在数字信号上升沿或下降沿的 50% 电平上触发,示波器的时基设置为比单个位周期稍长,示波器触发点设置为距示波器网格左边缘约四分之一。显示余辉用于捕获单个位周期的多个短采集,并将触发信号叠加以供目视观察。这种方法很直观,但不提供连续信号的眼图,不允许任何类型的后处理来确定任何眼图异常的原因,并且会受到示波器增加的触发抖动的影响。这是一种快速检查数字信号是否具有良好质量的好方法。

第二种方法更为可靠,应用更为广泛,尤其是对于高速串行数据信号。对数字信号进行长时间连续采集,然后以数学方式提取时钟,使用提取的时钟时间周期以数学方式将连续采集“分割”为位周期,然后叠加以形成眼图。由于数据是连续的,因此还可以执行额外的数学处理,以模拟时钟电路中锁相环 (PLL) 的使用、计算抖动、测量眼图开度的各个方面(幅度、宽度等),并调试任何存在的异常。

采样示波器(在之前的 FAQ 中描述)通过使用硬件时钟恢复电路来创建眼图,该电路与采样模块配合使用以创建眼图。这在今天通常被认为是一种过时的方法,除非可以使用非连续(非实时)数据采集完全分析和评估高速串行数据信号,否则不会广泛使用。在这种情况下,这种方法完全令人满意,并且对于提供的示波器带宽而言成本非常低。但是,当信号具有不同的比特率或 PLL 要求时,它确实需要不同的硬件。

Datasheet ">
姓名
Teledyne LeCroy Mid- to High-bandwidth Oscilloscopes Options and Accessories Catalog

Description of standard oscilloscope features, options and accessories provided with or available for mid-bandwidth to high-bandwidth oscilloscopes.

Datasheet
Teledyne LeCroy Low-bandwidth Oscilloscopes Options and Accessories Catalog

Description of standard oscilloscope features, options and accessories provided with or available for low-bandwidth oscilloscopes.

Datasheet
Application Notes

Shortcut to application notes for Teledyne LeCroy oscilloscopes.

Explore more
产品线卡

示波器、协议和数字化仪产品线卡

产品规格书
Teledyne LeCroy 中高带宽示波器选件和配件目录

描述中带宽至高带宽示波器所配备或可用的标准示波器功能、选件和附件。

产品规格书
Teledyne LeCroy 低带宽示波器选件和配件目录

描述低带宽示波器提供或可用的标准示波器功能、选件和附件。

产品规格书
应用笔记

Teledyne LeCroy 示波器应用说明的快捷方式。

探索更多
WaveMaster 8000HD 示波器:产品概述
MDA 8000HD 简介和概述
HDO6000B概述
更多视频
Sign Up for Updates
">
Sign Up for Updates, be Contacted by Sales, or would like to Request a Demo
">

需要帮助或信息?

请填写此表格,让我们知道您是否愿意 注册获取更新,同 销售人员联系, 或者 索取方案演示